Hilbert series and moduli spaces of k U(N ) vortices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-02

AUTHORS

Amihay Hanany, Rak-Kyeong Seong

ABSTRACT

We study the moduli spaces of k U(N ) vortices which are realized by the Higgs branch of a U(k) supersymmetric gauge theory. The theory has 4 supercharges and lives on k D1-branes in a N D3- and NS5-brane background. We realize the vortex moduli space as a ℂ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{C}}^{*} $$\end{document} projection of the vortex master space. The Hilbert series is calculated in order to characterize the algebraic structure of the vortex master space and to identify the precise ℂ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{C}}^{*} $$\end{document} projection. As a result, we are able to fully classify the moduli spaces up to 3 vortices. More... »

PAGES

12

References to SciGraph publications

  • 2014-01-31. Hilbert series for moduli spaces of instantons on ℂ2/â„Īn in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-06-13. Reconnection of colliding cosmic strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-01. Double handled brane tilings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-22. Brane tilings and specular duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-07-16. Vortices, instantons and branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-04-29. Vortex strings and four-dimensional gauge dynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-08-04. The master space of ð’Đ = 1 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-11. Group theory of non-abelian vortices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-29. Counting chiral operators in quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2015)012

    DOI

    http://dx.doi.org/10.1007/jhep02(2015)012

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030338289


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics, Korea Institute for Advanced Study, 85 Hoegi-ro, 130-722, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.249961.1", 
              "name": [
                "School of Physics, Korea Institute for Advanced Study, 85 Hoegi-ro, 130-722, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seong", 
            "givenName": "Rak-Kyeong", 
            "id": "sg:person.012116400507.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116400507.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2003/07/037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022518294", 
              "https://doi.org/10.1088/1126-6708/2003/07/037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036190561", 
              "https://doi.org/10.1007/jhep01(2014)182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025337838", 
              "https://doi.org/10.1007/jhep08(2012)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/08/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052066191", 
              "https://doi.org/10.1088/1126-6708/2008/08/012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/04/066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048245414", 
              "https://doi.org/10.1088/1126-6708/2004/04/066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048881894", 
              "https://doi.org/10.1007/jhep10(2013)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022904471", 
              "https://doi.org/10.1088/1126-6708/2007/11/092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004621202", 
              "https://doi.org/10.1007/jhep11(2010)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010618162", 
              "https://doi.org/10.1088/1126-6708/2005/06/021"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-02-02", 
        "datePublishedReg": "2015-02-02", 
        "description": "We study the moduli spaces of k U(N ) vortices which are realized by the Higgs branch of a U(k) supersymmetric gauge theory. The theory has 4 supercharges and lives on k D1-branes in a N D3- and NS5-brane background. We realize the vortex moduli space as a \u2102*\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathbb{C}}^{*} $$\\end{document} projection of the vortex master space. The Hilbert series is calculated in order to characterize the algebraic structure of the vortex master space and to identify the precise \u2102*\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ {\\mathbb{C}}^{*} $$\\end{document} projection. As a result, we are able to fully classify the moduli spaces up to 3 vortices.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2015)012", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2015"
          }
        ], 
        "keywords": [
          "moduli space", 
          "Hilbert series", 
          "vortex moduli space", 
          "supersymmetric gauge theories", 
          "algebraic structure", 
          "Higgs branch", 
          "gauge theory", 
          "master space", 
          "vortices", 
          "NS5-brane background", 
          "space", 
          "theory", 
          "supercharges", 
          "projections", 
          "branches", 
          "order", 
          "structure", 
          "series", 
          "results", 
          "modulus", 
          "background", 
          "life", 
          "D3"
        ], 
        "name": "Hilbert series and moduli spaces of k U(N ) vortices", 
        "pagination": "12", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030338289"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2015)012"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2015)012", 
          "https://app.dimensions.ai/details/publication/pub.1030338289"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_671.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2015)012"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)012'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)012'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)012'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)012'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      60 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2015)012 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N269dcd14b6694e58a756178ea82ce111
    4 schema:citation sg:pub.10.1007/jhep01(2013)070
    5 sg:pub.10.1007/jhep01(2014)182
    6 sg:pub.10.1007/jhep06(2010)100
    7 sg:pub.10.1007/jhep08(2012)107
    8 sg:pub.10.1007/jhep10(2013)001
    9 sg:pub.10.1007/jhep11(2010)042
    10 sg:pub.10.1088/1126-6708/2003/07/037
    11 sg:pub.10.1088/1126-6708/2004/04/066
    12 sg:pub.10.1088/1126-6708/2005/06/021
    13 sg:pub.10.1088/1126-6708/2007/03/090
    14 sg:pub.10.1088/1126-6708/2007/11/050
    15 sg:pub.10.1088/1126-6708/2007/11/092
    16 sg:pub.10.1088/1126-6708/2008/08/012
    17 schema:datePublished 2015-02-02
    18 schema:datePublishedReg 2015-02-02
    19 schema:description We study the moduli spaces of k U(N ) vortices which are realized by the Higgs branch of a U(k) supersymmetric gauge theory. The theory has 4 supercharges and lives on k D1-branes in a N D3- and NS5-brane background. We realize the vortex moduli space as a ℂ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{C}}^{*} $$\end{document} projection of the vortex master space. The Hilbert series is calculated in order to characterize the algebraic structure of the vortex master space and to identify the precise ℂ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{C}}^{*} $$\end{document} projection. As a result, we are able to fully classify the moduli spaces up to 3 vortices.
    20 schema:genre article
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N05e05b09372e4c0c90499289856f47d3
    23 N59a52ccfda0c4d45b241d13db1629b21
    24 sg:journal.1052482
    25 schema:keywords D3
    26 Higgs branch
    27 Hilbert series
    28 NS5-brane background
    29 algebraic structure
    30 background
    31 branches
    32 gauge theory
    33 life
    34 master space
    35 moduli space
    36 modulus
    37 order
    38 projections
    39 results
    40 series
    41 space
    42 structure
    43 supercharges
    44 supersymmetric gauge theories
    45 theory
    46 vortex moduli space
    47 vortices
    48 schema:name Hilbert series and moduli spaces of k U(N ) vortices
    49 schema:pagination 12
    50 schema:productId N93ba2d4666cd4ec18e12f4114eb52530
    51 Nad04ab6c53b04b22852d9920947fb6fe
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030338289
    53 https://doi.org/10.1007/jhep02(2015)012
    54 schema:sdDatePublished 2022-12-01T06:33
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nc6fc8f4ace444b5bac03a06f4cf9de0c
    57 schema:url https://doi.org/10.1007/jhep02(2015)012
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N05e05b09372e4c0c90499289856f47d3 schema:volumeNumber 2015
    62 rdf:type schema:PublicationVolume
    63 N269dcd14b6694e58a756178ea82ce111 rdf:first sg:person.012155553275.80
    64 rdf:rest Nef1d40154f85477f806c6fa718a450f3
    65 N59a52ccfda0c4d45b241d13db1629b21 schema:issueNumber 2
    66 rdf:type schema:PublicationIssue
    67 N93ba2d4666cd4ec18e12f4114eb52530 schema:name doi
    68 schema:value 10.1007/jhep02(2015)012
    69 rdf:type schema:PropertyValue
    70 Nad04ab6c53b04b22852d9920947fb6fe schema:name dimensions_id
    71 schema:value pub.1030338289
    72 rdf:type schema:PropertyValue
    73 Nc6fc8f4ace444b5bac03a06f4cf9de0c schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Nef1d40154f85477f806c6fa718a450f3 rdf:first sg:person.012116400507.33
    76 rdf:rest rdf:nil
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Pure Mathematics
    82 rdf:type schema:DefinedTerm
    83 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2015)012
    84 rdf:type schema:MonetaryGrant
    85 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2015)012
    86 rdf:type schema:MonetaryGrant
    87 sg:journal.1052482 schema:issn 1029-8479
    88 1126-6708
    89 schema:name Journal of High Energy Physics
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:person.012116400507.33 schema:affiliation grid-institutes:grid.249961.1
    93 schema:familyName Seong
    94 schema:givenName Rak-Kyeong
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116400507.33
    96 rdf:type schema:Person
    97 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    98 schema:familyName Hanany
    99 schema:givenName Amihay
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    101 rdf:type schema:Person
    102 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    103 https://doi.org/10.1007/jhep01(2013)070
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/jhep01(2014)182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036190561
    106 https://doi.org/10.1007/jhep01(2014)182
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    109 https://doi.org/10.1007/jhep06(2010)100
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/jhep08(2012)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025337838
    112 https://doi.org/10.1007/jhep08(2012)107
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep10(2013)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048881894
    115 https://doi.org/10.1007/jhep10(2013)001
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep11(2010)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004621202
    118 https://doi.org/10.1007/jhep11(2010)042
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1088/1126-6708/2003/07/037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022518294
    121 https://doi.org/10.1088/1126-6708/2003/07/037
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1088/1126-6708/2004/04/066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048245414
    124 https://doi.org/10.1088/1126-6708/2004/04/066
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1088/1126-6708/2005/06/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010618162
    127 https://doi.org/10.1088/1126-6708/2005/06/021
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    130 https://doi.org/10.1088/1126-6708/2007/03/090
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    133 https://doi.org/10.1088/1126-6708/2007/11/050
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1088/1126-6708/2007/11/092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904471
    136 https://doi.org/10.1088/1126-6708/2007/11/092
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1088/1126-6708/2008/08/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052066191
    139 https://doi.org/10.1088/1126-6708/2008/08/012
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.249961.1 schema:alternateName School of Physics, Korea Institute for Advanced Study, 85 Hoegi-ro, 130-722, Seoul, South Korea
    142 schema:name School of Physics, Korea Institute for Advanced Study, 85 Hoegi-ro, 130-722, Seoul, South Korea
    143 rdf:type schema:Organization
    144 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    145 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...