Lifshitz and Schrödinger vacua, superstar resolution in gauged maximal supergravities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02

AUTHORS

Hai-Shan Liu, H. Lü

ABSTRACT

We consider the subset of gauged maximal supergravities that consists of the SO(n + 1) gauge fields Aij and the scalar deformation Tij of the Sn in the spherical reduction of M-theory or type IIB. We focus on the Abelian Cartan subgroup and the diagonal entries of Tij. The resulting theories can be viewed as the STU models with additional hyperscalars. We find that the theories with only one or two such vectors can be generalized naturally to arbitrary dimensions. The same is true for the D = 4 or 5 Einstein-Maxwell theory with such a hyperscalar. The gauge fields become massive, determined by stationary points of the hyperscalars a la the analogous Abelian Higgs mechanism. We obtain classes of Lifshitz and Schrödinger vacua in these theories. The scaling exponent z turns out to be rather restricted, taking fractional or irrational numbers. Tweaking the theories by relaxing the mass parameter or making a small change of the superpotential, we find that solutions with z = 2 can emerge. In a different application, we find that the resolution of superstar singularity in the STU models by using bubbling-AdS solitons can be generalized to arbitrary dimensions in our theories. In particular, we obtain the smooth AdS solitons that can be viewed as the resolution of the Reissner-Nordstrøm superstars in general dimensions. More... »

PAGES

122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep02(2014)122

DOI

http://dx.doi.org/10.1007/jhep02(2014)122

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046341114


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hai-Shan", 
        "id": "sg:person.010047677665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "Department of Physics, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fc", 
        "givenName": "H.", 
        "id": "sg:person.012136555175.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0264-9381/30/6/065003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000006889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2011)041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001754384", 
          "https://doi.org/10.1007/jhep08(2011)041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2005.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005116818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/10/072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006622754", 
          "https://doi.org/10.1088/1126-6708/2008/10/072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.62.064028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009396657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.62.064028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009396657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00243-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009806891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2011)013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010428548", 
          "https://doi.org/10.1007/jhep05(2011)013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2012)082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011139750", 
          "https://doi.org/10.1007/jhep07(2012)082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00828-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013724281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2010)120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014843080", 
          "https://doi.org/10.1007/jhep04(2010)120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2010)120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014843080", 
          "https://doi.org/10.1007/jhep04(2010)120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-011-1853-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014929391", 
          "https://doi.org/10.1140/epjc/s10052-011-1853-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2010)047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015957518", 
          "https://doi.org/10.1007/jhep12(2010)047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2010)003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017398478", 
          "https://doi.org/10.1007/jhep12(2010)003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00372-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019275582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00372-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019275582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2004/10/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019853401", 
          "https://doi.org/10.1088/1126-6708/2004/10/025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2013)112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021705360", 
          "https://doi.org/10.1007/jhep09(2013)112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(00)00073-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023211157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.046003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023321313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.046003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023321313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(99)01266-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027590388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2010)002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031553218", 
          "https://doi.org/10.1007/jhep12(2010)002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00193-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032795930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033182093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033182093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(99)01170-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033599146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2013)053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035823759", 
          "https://doi.org/10.1007/jhep01(2013)053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2001/11/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035896293", 
          "https://doi.org/10.1088/1126-6708/2001/11/009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2010)014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036685544", 
          "https://doi.org/10.1007/jhep08(2010)014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90253-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038621482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/11/080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044137993", 
          "https://doi.org/10.1088/1126-6708/2008/11/080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2010)061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046262149", 
          "https://doi.org/10.1007/jhep12(2010)061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00299-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047923284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049212475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049212475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00419-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050369632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.83.121502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051977484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.83.121502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051977484"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "We consider the subset of gauged maximal supergravities that consists of the SO(n + 1) gauge fields Aij and the scalar deformation Tij of the Sn in the spherical reduction of M-theory or type IIB. We focus on the Abelian Cartan subgroup and the diagonal entries of Tij. The resulting theories can be viewed as the STU models with additional hyperscalars. We find that the theories with only one or two such vectors can be generalized naturally to arbitrary dimensions. The same is true for the D = 4 or 5 Einstein-Maxwell theory with such a hyperscalar. The gauge fields become massive, determined by stationary points of the hyperscalars a la the analogous Abelian Higgs mechanism. We obtain classes of Lifshitz and Schr\u00f6dinger vacua in these theories. The scaling exponent z turns out to be rather restricted, taking fractional or irrational numbers. Tweaking the theories by relaxing the mass parameter or making a small change of the superpotential, we find that solutions with z = 2 can emerge. In a different application, we find that the resolution of superstar singularity in the STU models by using bubbling-AdS solitons can be generalized to arbitrary dimensions in our theories. In particular, we obtain the smooth AdS solitons that can be viewed as the resolution of the Reissner-Nordstr\u00f8m superstars in general dimensions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep02(2014)122", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2014"
      }
    ], 
    "name": "Lifshitz and Schr\u00f6dinger vacua, superstar resolution in gauged maximal supergravities", 
    "pagination": "122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dcbf80a65eeff34659d55bb4602505d77a9869b02a1dc13abc2e4bfd499a98a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep02(2014)122"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046341114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep02(2014)122", 
      "https://app.dimensions.ai/details/publication/pub.1046341114"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FJHEP02%282014%29122"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2014)122'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2014)122'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2014)122'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2014)122'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep02(2014)122 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb3658f83041142b39bb4dceb895bbbfc
4 schema:citation sg:pub.10.1007/jhep01(2013)053
5 sg:pub.10.1007/jhep04(2010)120
6 sg:pub.10.1007/jhep05(2011)013
7 sg:pub.10.1007/jhep07(2012)082
8 sg:pub.10.1007/jhep08(2010)014
9 sg:pub.10.1007/jhep08(2011)041
10 sg:pub.10.1007/jhep09(2013)112
11 sg:pub.10.1007/jhep12(2010)002
12 sg:pub.10.1007/jhep12(2010)003
13 sg:pub.10.1007/jhep12(2010)047
14 sg:pub.10.1007/jhep12(2010)061
15 sg:pub.10.1088/1126-6708/2001/11/009
16 sg:pub.10.1088/1126-6708/2004/10/025
17 sg:pub.10.1088/1126-6708/2008/10/072
18 sg:pub.10.1088/1126-6708/2008/11/080
19 sg:pub.10.1140/epjc/s10052-011-1853-5
20 https://doi.org/10.1016/0550-3213(87)90253-7
21 https://doi.org/10.1016/j.physletb.2005.03.050
22 https://doi.org/10.1016/s0370-2693(00)00073-3
23 https://doi.org/10.1016/s0370-2693(99)01170-3
24 https://doi.org/10.1016/s0370-2693(99)01266-6
25 https://doi.org/10.1016/s0550-3213(00)00193-0
26 https://doi.org/10.1016/s0550-3213(00)00372-2
27 https://doi.org/10.1016/s0550-3213(99)00243-6
28 https://doi.org/10.1016/s0550-3213(99)00299-0
29 https://doi.org/10.1016/s0550-3213(99)00419-8
30 https://doi.org/10.1016/s0550-3213(99)00828-7
31 https://doi.org/10.1088/0264-9381/30/6/065003
32 https://doi.org/10.1103/physrevd.62.064028
33 https://doi.org/10.1103/physrevd.78.046003
34 https://doi.org/10.1103/physrevd.78.106005
35 https://doi.org/10.1103/physrevd.83.121502
36 https://doi.org/10.1103/physrevlett.101.061601
37 https://doi.org/10.1103/physrevlett.83.5226
38 schema:datePublished 2014-02
39 schema:datePublishedReg 2014-02-01
40 schema:description We consider the subset of gauged maximal supergravities that consists of the SO(n + 1) gauge fields Aij and the scalar deformation Tij of the Sn in the spherical reduction of M-theory or type IIB. We focus on the Abelian Cartan subgroup and the diagonal entries of Tij. The resulting theories can be viewed as the STU models with additional hyperscalars. We find that the theories with only one or two such vectors can be generalized naturally to arbitrary dimensions. The same is true for the D = 4 or 5 Einstein-Maxwell theory with such a hyperscalar. The gauge fields become massive, determined by stationary points of the hyperscalars a la the analogous Abelian Higgs mechanism. We obtain classes of Lifshitz and Schrödinger vacua in these theories. The scaling exponent z turns out to be rather restricted, taking fractional or irrational numbers. Tweaking the theories by relaxing the mass parameter or making a small change of the superpotential, we find that solutions with z = 2 can emerge. In a different application, we find that the resolution of superstar singularity in the STU models by using bubbling-AdS solitons can be generalized to arbitrary dimensions in our theories. In particular, we obtain the smooth AdS solitons that can be viewed as the resolution of the Reissner-Nordstrøm superstars in general dimensions.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N129026fb87e74f96bfeec479863d2d45
45 N40f592f6f0b3420d8e85eb35a63c1fcb
46 sg:journal.1052482
47 schema:name Lifshitz and Schrödinger vacua, superstar resolution in gauged maximal supergravities
48 schema:pagination 122
49 schema:productId N27a2694b197540f2ae1cc622651744e6
50 N96e49f494e204b27b0d3ea2354b7faf4
51 Ne27cb65763f74bf7af5388062214bd37
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046341114
53 https://doi.org/10.1007/jhep02(2014)122
54 schema:sdDatePublished 2019-04-10T15:52
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N5a6feff44a1647d3998afcacb9af25f2
57 schema:url http://link.springer.com/10.1007%2FJHEP02%282014%29122
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N129026fb87e74f96bfeec479863d2d45 schema:volumeNumber 2014
62 rdf:type schema:PublicationVolume
63 N27a2694b197540f2ae1cc622651744e6 schema:name readcube_id
64 schema:value dcbf80a65eeff34659d55bb4602505d77a9869b02a1dc13abc2e4bfd499a98a9
65 rdf:type schema:PropertyValue
66 N40f592f6f0b3420d8e85eb35a63c1fcb schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 N5a6feff44a1647d3998afcacb9af25f2 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N7e2042868fe44be78f4aa8d5f32634a2 rdf:first sg:person.012136555175.11
71 rdf:rest rdf:nil
72 N96e49f494e204b27b0d3ea2354b7faf4 schema:name dimensions_id
73 schema:value pub.1046341114
74 rdf:type schema:PropertyValue
75 Nb3658f83041142b39bb4dceb895bbbfc rdf:first sg:person.010047677665.03
76 rdf:rest N7e2042868fe44be78f4aa8d5f32634a2
77 Ne27cb65763f74bf7af5388062214bd37 schema:name doi
78 schema:value 10.1007/jhep02(2014)122
79 rdf:type schema:PropertyValue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:journal.1052482 schema:issn 1029-8479
87 1126-6708
88 schema:name Journal of High Energy Physics
89 rdf:type schema:Periodical
90 sg:person.010047677665.03 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
91 schema:familyName Liu
92 schema:givenName Hai-Shan
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03
94 rdf:type schema:Person
95 sg:person.012136555175.11 schema:affiliation https://www.grid.ac/institutes/grid.20513.35
96 schema:familyName
97 schema:givenName H.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11
99 rdf:type schema:Person
100 sg:pub.10.1007/jhep01(2013)053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035823759
101 https://doi.org/10.1007/jhep01(2013)053
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/jhep04(2010)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014843080
104 https://doi.org/10.1007/jhep04(2010)120
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/jhep05(2011)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010428548
107 https://doi.org/10.1007/jhep05(2011)013
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/jhep07(2012)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011139750
110 https://doi.org/10.1007/jhep07(2012)082
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/jhep08(2010)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036685544
113 https://doi.org/10.1007/jhep08(2010)014
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/jhep08(2011)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001754384
116 https://doi.org/10.1007/jhep08(2011)041
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/jhep09(2013)112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021705360
119 https://doi.org/10.1007/jhep09(2013)112
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/jhep12(2010)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031553218
122 https://doi.org/10.1007/jhep12(2010)002
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/jhep12(2010)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017398478
125 https://doi.org/10.1007/jhep12(2010)003
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/jhep12(2010)047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015957518
128 https://doi.org/10.1007/jhep12(2010)047
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/jhep12(2010)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046262149
131 https://doi.org/10.1007/jhep12(2010)061
132 rdf:type schema:CreativeWork
133 sg:pub.10.1088/1126-6708/2001/11/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035896293
134 https://doi.org/10.1088/1126-6708/2001/11/009
135 rdf:type schema:CreativeWork
136 sg:pub.10.1088/1126-6708/2004/10/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019853401
137 https://doi.org/10.1088/1126-6708/2004/10/025
138 rdf:type schema:CreativeWork
139 sg:pub.10.1088/1126-6708/2008/10/072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006622754
140 https://doi.org/10.1088/1126-6708/2008/10/072
141 rdf:type schema:CreativeWork
142 sg:pub.10.1088/1126-6708/2008/11/080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044137993
143 https://doi.org/10.1088/1126-6708/2008/11/080
144 rdf:type schema:CreativeWork
145 sg:pub.10.1140/epjc/s10052-011-1853-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014929391
146 https://doi.org/10.1140/epjc/s10052-011-1853-5
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0550-3213(87)90253-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038621482
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physletb.2005.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005116818
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0370-2693(00)00073-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023211157
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0370-2693(99)01170-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033599146
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0370-2693(99)01266-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027590388
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0550-3213(00)00193-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032795930
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0550-3213(00)00372-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019275582
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0550-3213(99)00243-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009806891
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0550-3213(99)00299-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047923284
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0550-3213(99)00419-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369632
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0550-3213(99)00828-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013724281
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0264-9381/30/6/065003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000006889
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevd.62.064028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009396657
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevd.78.046003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023321313
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevd.78.106005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182093
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevd.83.121502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051977484
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.101.061601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049212475
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.83.5226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624796
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.20513.35 schema:alternateName Beijing Normal University
185 schema:name Department of Physics, Beijing Normal University, 100875, Beijing, China
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
188 schema:name Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...