On D = 5 super Yang-Mills theory and (2, 0) theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-02-03

AUTHORS

Michael R. Douglas

ABSTRACT

We discuss how D = 5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2, 0) theory in six dimensions. It is known that the compactification of (2, 0) theory on a circle leads to D = 5 MSYM. A variety of arguments suggest that the relation can be reversed, and that all of the degrees of freedom of (2, 0) theory are already present in D = 5 MSYM. If so, this relation should have consequences for D = 5 SYM perturbation theory. We explore whether it might imply all orders finiteness, or else an unusual relation between the cutoff and the gauge coupling. S-duality of the reduction to D = 4 may provide nonperturbative constraints or tests of these options. More... »

PAGES

1-18

References to SciGraph publications

  • 2010-11-05. A simple approach to counterterms in N=8 supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-01-19. M5-Branes, D4-Branes and quantum 5D super-Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-14. D-instantons and multiparticle production in N=4 SYM in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-11-13. Non-renormalization conditions for four-gluon scattering in supersymmetric string and field theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-08-05. The partonic nature of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-01-10. On duality symmetries of supergravity invariants in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-31. 5 loops in 24/5 dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-08-11. Integral invariants in N = 4 SYM and the effective action for coincident D-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2011)011

    DOI

    http://dx.doi.org/10.1007/jhep02(2011)011

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037470008


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "I.H.E.S., Le Bois-Marie, 91440, Bures-sur-Yvette, France", 
              "id": "http://www.grid.ac/institutes/grid.425258.c", 
              "name": [
                "Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, U.S.A.", 
                "I.H.E.S., Le Bois-Marie, 91440, Bures-sur-Yvette, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Douglas", 
            "givenName": "Michael R.", 
            "id": "sg:person.016110265131.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016110265131.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2010)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049403531", 
              "https://doi.org/10.1007/jhep11(2010)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/08/016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015866326", 
              "https://doi.org/10.1088/1126-6708/2003/08/016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002194604", 
              "https://doi.org/10.1007/jhep01(2010)046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2011)083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050303342", 
              "https://doi.org/10.1007/jhep01(2011)083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2011)020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050846510", 
              "https://doi.org/10.1007/jhep01(2011)020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/11/063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011361109", 
              "https://doi.org/10.1088/1126-6708/2009/11/063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022517576", 
              "https://doi.org/10.1007/jhep08(2010)132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/08/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009428775", 
              "https://doi.org/10.1088/1126-6708/2009/08/006"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-02-03", 
        "datePublishedReg": "2011-02-03", 
        "description": "We discuss how D = 5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2, 0) theory in six dimensions. It is known that the compactification of (2, 0) theory on a circle leads to D = 5 MSYM. A variety of arguments suggest that the relation can be reversed, and that all of the degrees of freedom of (2, 0) theory are already present in D = 5 MSYM. If so, this relation should have consequences for D = 5 SYM perturbation theory. We explore whether it might imply all orders finiteness, or else an unusual relation between the cutoff and the gauge coupling. S-duality of the reduction to D = 4 may provide nonperturbative constraints or tests of these options.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2011)011", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2011"
          }
        ], 
        "keywords": [
          "Yang-Mills theory", 
          "supersymmetric Yang-Mills theory", 
          "super Yang-Mills theory", 
          "degrees of freedom", 
          "perturbation theory", 
          "nonperturbative constraints", 
          "theory", 
          "MSYM", 
          "compactification", 
          "gauge couplings", 
          "duality", 
          "constraints", 
          "dimensions", 
          "freedom", 
          "circle", 
          "argument", 
          "variety of arguments", 
          "relation", 
          "order", 
          "coupling", 
          "variety", 
          "degree", 
          "consequences", 
          "cutoff", 
          "reduction", 
          "options", 
          "test", 
          "unusual relation", 
          "compactification of (2, 0) theory", 
          "SYM perturbation theory"
        ], 
        "name": "On D = 5 super Yang-Mills theory and (2, 0) theory", 
        "pagination": "1-18", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037470008"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2011)011"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2011)011", 
          "https://app.dimensions.ai/details/publication/pub.1037470008"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_536.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2011)011"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2011)011'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2011)011'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2011)011'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2011)011'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      22 PREDICATES      63 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2011)011 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Naa7b9808f1fe4eaab89c531a8c1cdf91
    4 schema:citation sg:pub.10.1007/jhep01(2010)046
    5 sg:pub.10.1007/jhep01(2011)020
    6 sg:pub.10.1007/jhep01(2011)083
    7 sg:pub.10.1007/jhep08(2010)132
    8 sg:pub.10.1007/jhep11(2010)016
    9 sg:pub.10.1088/1126-6708/2003/08/016
    10 sg:pub.10.1088/1126-6708/2009/08/006
    11 sg:pub.10.1088/1126-6708/2009/11/063
    12 schema:datePublished 2011-02-03
    13 schema:datePublishedReg 2011-02-03
    14 schema:description We discuss how D = 5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2, 0) theory in six dimensions. It is known that the compactification of (2, 0) theory on a circle leads to D = 5 MSYM. A variety of arguments suggest that the relation can be reversed, and that all of the degrees of freedom of (2, 0) theory are already present in D = 5 MSYM. If so, this relation should have consequences for D = 5 SYM perturbation theory. We explore whether it might imply all orders finiteness, or else an unusual relation between the cutoff and the gauge coupling. S-duality of the reduction to D = 4 may provide nonperturbative constraints or tests of these options.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N908b5463333d4c208da8a4f479a7c6fb
    19 Ne165b507a2bd488a8843fe9feda48561
    20 sg:journal.1052482
    21 schema:keywords MSYM
    22 SYM perturbation theory
    23 Yang-Mills theory
    24 argument
    25 circle
    26 compactification
    27 compactification of (2, 0) theory
    28 consequences
    29 constraints
    30 coupling
    31 cutoff
    32 degree
    33 degrees of freedom
    34 dimensions
    35 duality
    36 freedom
    37 gauge couplings
    38 nonperturbative constraints
    39 options
    40 order
    41 perturbation theory
    42 reduction
    43 relation
    44 super Yang-Mills theory
    45 supersymmetric Yang-Mills theory
    46 test
    47 theory
    48 unusual relation
    49 variety
    50 variety of arguments
    51 schema:name On D = 5 super Yang-Mills theory and (2, 0) theory
    52 schema:pagination 1-18
    53 schema:productId N4dca94e4e2664dc99d2c64c0974ecf20
    54 N75ae4e5da4e9441f9914cdade77790c6
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037470008
    56 https://doi.org/10.1007/jhep02(2011)011
    57 schema:sdDatePublished 2022-01-01T18:24
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher Nfc125d2557d24b1c8fa9af2ce6807724
    60 schema:url https://doi.org/10.1007/jhep02(2011)011
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N4dca94e4e2664dc99d2c64c0974ecf20 schema:name doi
    65 schema:value 10.1007/jhep02(2011)011
    66 rdf:type schema:PropertyValue
    67 N75ae4e5da4e9441f9914cdade77790c6 schema:name dimensions_id
    68 schema:value pub.1037470008
    69 rdf:type schema:PropertyValue
    70 N908b5463333d4c208da8a4f479a7c6fb schema:issueNumber 2
    71 rdf:type schema:PublicationIssue
    72 Naa7b9808f1fe4eaab89c531a8c1cdf91 rdf:first sg:person.016110265131.29
    73 rdf:rest rdf:nil
    74 Ne165b507a2bd488a8843fe9feda48561 schema:volumeNumber 2011
    75 rdf:type schema:PublicationVolume
    76 Nfc125d2557d24b1c8fa9af2ce6807724 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Applied Mathematics
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1052482 schema:issn 1029-8479
    85 1126-6708
    86 schema:name Journal of High Energy Physics
    87 schema:publisher Springer Nature
    88 rdf:type schema:Periodical
    89 sg:person.016110265131.29 schema:affiliation grid-institutes:grid.425258.c
    90 schema:familyName Douglas
    91 schema:givenName Michael R.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016110265131.29
    93 rdf:type schema:Person
    94 sg:pub.10.1007/jhep01(2010)046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002194604
    95 https://doi.org/10.1007/jhep01(2010)046
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/jhep01(2011)020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846510
    98 https://doi.org/10.1007/jhep01(2011)020
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/jhep01(2011)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050303342
    101 https://doi.org/10.1007/jhep01(2011)083
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/jhep08(2010)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022517576
    104 https://doi.org/10.1007/jhep08(2010)132
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/jhep11(2010)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049403531
    107 https://doi.org/10.1007/jhep11(2010)016
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1088/1126-6708/2003/08/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015866326
    110 https://doi.org/10.1088/1126-6708/2003/08/016
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1088/1126-6708/2009/08/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009428775
    113 https://doi.org/10.1088/1126-6708/2009/08/006
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1088/1126-6708/2009/11/063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011361109
    116 https://doi.org/10.1088/1126-6708/2009/11/063
    117 rdf:type schema:CreativeWork
    118 grid-institutes:grid.425258.c schema:alternateName I.H.E.S., Le Bois-Marie, 91440, Bures-sur-Yvette, France
    119 schema:name I.H.E.S., Le Bois-Marie, 91440, Bures-sur-Yvette, France
    120 Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, U.S.A.
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...