Quiver origami: discrete gauging and folding View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-15

AUTHORS

Antoine Bourget, Amihay Hanany, Dominik Miketa

ABSTRACT

We study two types of discrete operations on Coulomb branches of 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories using both abelianisation and the monopole formula. We generalise previous work on discrete quotients of Coulomb branches and introduce novel wreathed quiver theories. We further study quiver folding which produces Coulomb branches of non-simply laced quivers. Our methods explicitly describe Coulomb branches in terms of generators and relations including mass deformations. More... »

PAGES

86

References to SciGraph publications

  • 2020-01-24. The Higgs mechanism — Hasse diagrams for symplectic singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-27. Fractional quiver W-algebras in LETTERS IN MATHEMATICAL PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-12-01. Argyres-Seiberg Duality and the Higgs Branch in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2004. Lie Groups in NONE
  • 2019-02-19. Nilpotent orbit Coulomb branches of types AD in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-10-16. Coulomb branch quantization and abelianized monopole bubbling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-14. Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-04. Non-connected gauge groups and the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-02-15. Tri-vertices and SU(2)’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-15. On three-dimensional quiver gauge theories of type B in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-03. The Coulomb Branch of 3d N=4 Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-23. Compactifications of 5d SCFTs with a twist in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999. Applied Finite Group Actions in NONE
  • 2021-02-05. S-fold magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-05. Geometric Satake, Springer correspondence and small representations in SELECTA MATHEMATICA
  • 2019-04-01. Compactifications of 6dN = (1, 0) SCFTs with non-trivial Stiefel-Whitney classes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-24. Discrete quotients of 3-dimensional N=4 Coulomb branches via the cycle index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-10. Coulomb Branch of a Multiloop Quiver Gauge Theory in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 2020-09-30. Ungauging schemes and Coulomb branches of non-simply laced quiver theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-09. Coulomb branch operators and mirror symmetry in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-21. Quiver theories and formulae for nilpotent orbits of Exceptional algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-07-24. A characterization of nilpotent orbit closures among symplectic singularities in MATHEMATISCHE ANNALEN
  • 2018-08-24. Discrete gauging in Coulomb branches of three dimensional N=4 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2021)086

    DOI

    http://dx.doi.org/10.1007/jhep01(2021)086

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1134630975


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourget", 
            "givenName": "Antoine", 
            "id": "sg:person.012105771151.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miketa", 
            "givenName": "Dominik", 
            "id": "sg:person.011625324603.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011625324603.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep10(2019)179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122022362", 
              "https://doi.org/10.1007/jhep10(2019)179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2020)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124331365", 
              "https://doi.org/10.1007/jhep01(2020)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048187336", 
              "https://doi.org/10.1007/jhep02(2011)069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-11167-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018706475", 
              "https://doi.org/10.1007/978-3-662-11167-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092691109", 
              "https://doi.org/10.1007/jhep11(2017)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106341456", 
              "https://doi.org/10.1007/jhep08(2018)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2019)006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113233666", 
              "https://doi.org/10.1007/jhep04(2019)006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00208-017-1572-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090880743", 
              "https://doi.org/10.1007/s00208-017-1572-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106339497", 
              "https://doi.org/10.1007/jhep08(2018)158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092891163", 
              "https://doi.org/10.1007/jhep11(2017)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091817147", 
              "https://doi.org/10.1007/jhep09(2017)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074198899", 
              "https://doi.org/10.1007/jhep01(2017)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-017-2903-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085755009", 
              "https://doi.org/10.1007/s00220-017-2903-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00029-013-0125-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005949589", 
              "https://doi.org/10.1007/s00029-013-0125-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-018-1087-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103669468", 
              "https://doi.org/10.1007/s11005-018-1087-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2019)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112361255", 
              "https://doi.org/10.1007/jhep02(2019)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-4094-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003414083", 
              "https://doi.org/10.1007/978-1-4757-4094-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092100969", 
              "https://doi.org/10.1007/jhep10(2017)033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0016266319040014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124348720", 
              "https://doi.org/10.1134/s0016266319040014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135167235", 
              "https://doi.org/10.1007/jhep02(2021)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103750147", 
              "https://doi.org/10.1007/jhep04(2018)037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131327365", 
              "https://doi.org/10.1007/jhep09(2020)193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0938-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037774778", 
              "https://doi.org/10.1007/s00220-009-0938-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-01-15", 
        "datePublishedReg": "2021-01-15", 
        "description": "We study two types of discrete operations on Coulomb branches of 3dN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 quiver gauge theories using both abelianisation and the monopole formula. We generalise previous work on discrete quotients of Coulomb branches and introduce novel wreathed quiver theories. We further study quiver folding which produces Coulomb branches of non-simply laced quivers. Our methods explicitly describe Coulomb branches in terms of generators and relations including mass deformations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep01(2021)086", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8672070", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "branches", 
          "types", 
          "operation", 
          "quotient", 
          "novel", 
          "method", 
          "relation", 
          "formula", 
          "previous work", 
          "work", 
          "terms", 
          "folding", 
          "discrete operations", 
          "theory", 
          "abelianisation", 
          "quivers", 
          "generator", 
          "mass deformation", 
          "deformation", 
          "gauging", 
          "Coulomb branch", 
          "quiver gauge theories", 
          "gauge theory", 
          "monopole formula", 
          "discrete quotients", 
          "terms of generators", 
          "discrete gauging"
        ], 
        "name": "Quiver origami: discrete gauging and folding", 
        "pagination": "86", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1134630975"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2021)086"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2021)086", 
          "https://app.dimensions.ai/details/publication/pub.1134630975"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_877.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep01(2021)086"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)086'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)086'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)086'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)086'


     

    This table displays all metadata directly associated to this object as RDF triples.

    226 TRIPLES      21 PREDICATES      82 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2021)086 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 anzsrc-for:0206
    6 schema:author Nf2a6acdf6a224069baf8af0da9279260
    7 schema:citation sg:pub.10.1007/978-1-4757-4094-3
    8 sg:pub.10.1007/978-3-662-11167-3
    9 sg:pub.10.1007/jhep01(2013)070
    10 sg:pub.10.1007/jhep01(2014)005
    11 sg:pub.10.1007/jhep01(2017)097
    12 sg:pub.10.1007/jhep01(2020)157
    13 sg:pub.10.1007/jhep02(2011)069
    14 sg:pub.10.1007/jhep02(2019)113
    15 sg:pub.10.1007/jhep02(2021)054
    16 sg:pub.10.1007/jhep04(2018)037
    17 sg:pub.10.1007/jhep04(2019)006
    18 sg:pub.10.1007/jhep06(2016)130
    19 sg:pub.10.1007/jhep08(2018)157
    20 sg:pub.10.1007/jhep08(2018)158
    21 sg:pub.10.1007/jhep09(2017)067
    22 sg:pub.10.1007/jhep09(2020)193
    23 sg:pub.10.1007/jhep10(2017)033
    24 sg:pub.10.1007/jhep10(2019)179
    25 sg:pub.10.1007/jhep11(2017)079
    26 sg:pub.10.1007/jhep11(2017)126
    27 sg:pub.10.1007/jhep12(2014)103
    28 sg:pub.10.1007/s00029-013-0125-7
    29 sg:pub.10.1007/s00208-017-1572-9
    30 sg:pub.10.1007/s00220-009-0938-6
    31 sg:pub.10.1007/s00220-017-2903-0
    32 sg:pub.10.1007/s11005-018-1087-7
    33 sg:pub.10.1088/1126-6708/2000/11/033
    34 sg:pub.10.1134/s0016266319040014
    35 schema:datePublished 2021-01-15
    36 schema:datePublishedReg 2021-01-15
    37 schema:description We study two types of discrete operations on Coulomb branches of 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories using both abelianisation and the monopole formula. We generalise previous work on discrete quotients of Coulomb branches and introduce novel wreathed quiver theories. We further study quiver folding which produces Coulomb branches of non-simply laced quivers. Our methods explicitly describe Coulomb branches in terms of generators and relations including mass deformations.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N912d09a0afe74750be9092300d8dcc0e
    41 Nb21f4f913e82459c94b701ec9cdb16c9
    42 sg:journal.1052482
    43 schema:keywords Coulomb branch
    44 abelianisation
    45 branches
    46 deformation
    47 discrete gauging
    48 discrete operations
    49 discrete quotients
    50 folding
    51 formula
    52 gauge theory
    53 gauging
    54 generator
    55 mass deformation
    56 method
    57 monopole formula
    58 novel
    59 operation
    60 previous work
    61 quiver gauge theories
    62 quivers
    63 quotient
    64 relation
    65 terms
    66 terms of generators
    67 theory
    68 types
    69 work
    70 schema:name Quiver origami: discrete gauging and folding
    71 schema:pagination 86
    72 schema:productId N0be8b912e1e44936ab49f90cf5151511
    73 N776d779a9412450683ff38d97b340529
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134630975
    75 https://doi.org/10.1007/jhep01(2021)086
    76 schema:sdDatePublished 2022-12-01T06:41
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher Nb09da80acbb8440dae3b8c92571a6ad3
    79 schema:url https://doi.org/10.1007/jhep01(2021)086
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N0be8b912e1e44936ab49f90cf5151511 schema:name doi
    84 schema:value 10.1007/jhep01(2021)086
    85 rdf:type schema:PropertyValue
    86 N776d779a9412450683ff38d97b340529 schema:name dimensions_id
    87 schema:value pub.1134630975
    88 rdf:type schema:PropertyValue
    89 N88d1932f401e4531a749a9b5b89dada7 rdf:first sg:person.011625324603.21
    90 rdf:rest rdf:nil
    91 N912d09a0afe74750be9092300d8dcc0e schema:issueNumber 1
    92 rdf:type schema:PublicationIssue
    93 Naf92f6c7d4234d85b5c4f56d2f0700e8 rdf:first sg:person.012155553275.80
    94 rdf:rest N88d1932f401e4531a749a9b5b89dada7
    95 Nb09da80acbb8440dae3b8c92571a6ad3 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Nb21f4f913e82459c94b701ec9cdb16c9 schema:volumeNumber 2021
    98 rdf:type schema:PublicationVolume
    99 Nf2a6acdf6a224069baf8af0da9279260 rdf:first sg:person.012105771151.34
    100 rdf:rest Naf92f6c7d4234d85b5c4f56d2f0700e8
    101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Mathematical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Mathematical Physics
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Physical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Quantum Physics
    115 rdf:type schema:DefinedTerm
    116 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2021)086
    117 rdf:type schema:MonetaryGrant
    118 sg:grant.8672070 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2021)086
    119 rdf:type schema:MonetaryGrant
    120 sg:journal.1052482 schema:issn 1029-8479
    121 1126-6708
    122 schema:name Journal of High Energy Physics
    123 schema:publisher Springer Nature
    124 rdf:type schema:Periodical
    125 sg:person.011625324603.21 schema:affiliation grid-institutes:grid.7445.2
    126 schema:familyName Miketa
    127 schema:givenName Dominik
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011625324603.21
    129 rdf:type schema:Person
    130 sg:person.012105771151.34 schema:affiliation grid-institutes:grid.7445.2
    131 schema:familyName Bourget
    132 schema:givenName Antoine
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34
    134 rdf:type schema:Person
    135 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    136 schema:familyName Hanany
    137 schema:givenName Amihay
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    139 rdf:type schema:Person
    140 sg:pub.10.1007/978-1-4757-4094-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003414083
    141 https://doi.org/10.1007/978-1-4757-4094-3
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-3-662-11167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706475
    144 https://doi.org/10.1007/978-3-662-11167-3
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    147 https://doi.org/10.1007/jhep01(2013)070
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    150 https://doi.org/10.1007/jhep01(2014)005
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep01(2017)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074198899
    153 https://doi.org/10.1007/jhep01(2017)097
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep01(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124331365
    156 https://doi.org/10.1007/jhep01(2020)157
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep02(2011)069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187336
    159 https://doi.org/10.1007/jhep02(2011)069
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep02(2019)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112361255
    162 https://doi.org/10.1007/jhep02(2019)113
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep02(2021)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135167235
    165 https://doi.org/10.1007/jhep02(2021)054
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep04(2018)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103750147
    168 https://doi.org/10.1007/jhep04(2018)037
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep04(2019)006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113233666
    171 https://doi.org/10.1007/jhep04(2019)006
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    174 https://doi.org/10.1007/jhep06(2016)130
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep08(2018)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106341456
    177 https://doi.org/10.1007/jhep08(2018)157
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep08(2018)158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106339497
    180 https://doi.org/10.1007/jhep08(2018)158
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep09(2017)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091817147
    183 https://doi.org/10.1007/jhep09(2017)067
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/jhep09(2020)193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131327365
    186 https://doi.org/10.1007/jhep09(2020)193
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/jhep10(2017)033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092100969
    189 https://doi.org/10.1007/jhep10(2017)033
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/jhep10(2019)179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122022362
    192 https://doi.org/10.1007/jhep10(2019)179
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/jhep11(2017)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
    195 https://doi.org/10.1007/jhep11(2017)079
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/jhep11(2017)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    198 https://doi.org/10.1007/jhep11(2017)126
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    201 https://doi.org/10.1007/jhep12(2014)103
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00029-013-0125-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005949589
    204 https://doi.org/10.1007/s00029-013-0125-7
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00208-017-1572-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090880743
    207 https://doi.org/10.1007/s00208-017-1572-9
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00220-009-0938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774778
    210 https://doi.org/10.1007/s00220-009-0938-6
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s00220-017-2903-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085755009
    213 https://doi.org/10.1007/s00220-017-2903-0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11005-018-1087-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103669468
    216 https://doi.org/10.1007/s11005-018-1087-7
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    219 https://doi.org/10.1088/1126-6708/2000/11/033
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1134/s0016266319040014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124348720
    222 https://doi.org/10.1134/s0016266319040014
    223 rdf:type schema:CreativeWork
    224 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K.
    225 schema:name Theoretical Physics, Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, U.K.
    226 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...