Ontology type: schema:ScholarlyArticle Open Access: True
2021-01-13
AUTHORSKazunobu Maruyoshi, Toshihiro Ota, Junya Yagi
ABSTRACTWe establish a correspondence between a class of Wilson-’t Hooft lines in four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-’t Hooft lines in a twisted product space S1 × ϵ ℝ2 × ℝ by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities. More... »
PAGES72
http://scigraph.springernature.com/pub.10.1007/jhep01(2021)072
DOIhttp://dx.doi.org/10.1007/jhep01(2021)072
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1134555242
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.263319.c",
"name": [
"Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Maruyoshi",
"givenName": "Kazunobu",
"id": "sg:person.014757666656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS), RIKEN, Wako, 351-0198, Saitama, Japan",
"id": "http://www.grid.ac/institutes/grid.7597.c",
"name": [
"Department of Physics, Osaka University, Toyonaka, 560-0043, Osaka, Japan",
"Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS), RIKEN, Wako, 351-0198, Saitama, Japan"
],
"type": "Organization"
},
"familyName": "Ota",
"givenName": "Toshihiro",
"id": "sg:person.012557243751.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557243751.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, P.R. China",
"id": "http://www.grid.ac/institutes/grid.12527.33",
"name": [
"Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada",
"Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, P.R. China"
],
"type": "Organization"
},
"familyName": "Yagi",
"givenName": "Junya",
"id": "sg:person.010537202003.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537202003.01"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep11(2018)126",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110152558",
"https://doi.org/10.1007/jhep11(2018)126"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11005-010-0369-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022882223",
"https://doi.org/10.1007/s11005-010-0369-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9078-6_119",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103637182",
"https://doi.org/10.1007/978-3-0348-9078-6_119"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2017)013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085886131",
"https://doi.org/10.1007/jhep06(2017)013"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2010)057",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026825461",
"https://doi.org/10.1007/jhep02(2010)057"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00420302",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048223836",
"https://doi.org/10.1007/bf00420302"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2010)113",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051074521",
"https://doi.org/10.1007/jhep01(2010)113"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01207363",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005326555",
"https://doi.org/10.1007/bf01207363"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2014)112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038690562",
"https://doi.org/10.1007/jhep08(2014)112"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/11/002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036176184",
"https://doi.org/10.1088/1126-6708/2009/11/002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2018)014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106824859",
"https://doi.org/10.1007/jhep09(2018)014"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2014)062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044645362",
"https://doi.org/10.1007/jhep10(2014)062"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2019)180",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1115954019",
"https://doi.org/10.1007/jhep05(2019)180"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2019)073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120961639",
"https://doi.org/10.1007/jhep09(2019)073"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-010-1071-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040539415",
"https://doi.org/10.1007/s00220-010-1071-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002200050137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044576357",
"https://doi.org/10.1007/s002200050137"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2012)148",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013430875",
"https://doi.org/10.1007/jhep01(2012)148"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-01-13",
"datePublishedReg": "2021-01-13",
"description": "We establish a correspondence between a class of Wilson-\u2019t Hooft lines in four-dimensional N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-\u2019t Hooft lines in a twisted product space S1 \u00d7 \u03f5 \u211d2 \u00d7 \u211d by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities.",
"genre": "article",
"id": "sg:pub.10.1007/jhep01(2021)072",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6839718",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.9315294",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.9194924",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2021"
}
],
"keywords": [
"transfer matrix",
"quantum integrable systems",
"four-dimensional Chern",
"supersymmetric gauge theories",
"integrable systems",
"Verlinde operators",
"Toda theories",
"circular quivers",
"string theory",
"L-operators",
"vacuum expectation value",
"AGT correspondence",
"Simons theory",
"gauge theory",
"Wigner transform",
"expectation values",
"supersymmetric localization",
"theory",
"matrix",
"Chern",
"quivers",
"duality",
"correspondence",
"operators",
"class",
"system",
"setup",
"lines",
"transform",
"values",
"variants",
"identification",
"localization"
],
"name": "Wilson-\u2019t Hooft lines as transfer matrices",
"pagination": "72",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1134555242"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep01(2021)072"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep01(2021)072",
"https://app.dimensions.ai/details/publication/pub.1134555242"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_888.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep01(2021)072"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'
This table displays all metadata directly associated to this object as RDF triples.
195 TRIPLES
22 PREDICATES
77 URIs
50 LITERALS
6 BLANK NODES