Wilson-’t Hooft lines as transfer matrices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-13

AUTHORS

Kazunobu Maruyoshi, Toshihiro Ota, Junya Yagi

ABSTRACT

We establish a correspondence between a class of Wilson-’t Hooft lines in four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-’t Hooft lines in a twisted product space S1 × ϵ ℝ2 × ℝ by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities. More... »

PAGES

72

References to SciGraph publications

  • 2010-01-22. Liouville Correlation Functions from Four-Dimensional Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-27. String theory of the Omega deformation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-09. The superconformal index and an elliptic algebra of surface defects in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-27. Loop and surface operators in gauge theory and Liouville modular geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 1995. Conformal Field Theory and Integrable Systems Associated to Elliptic Curves in PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS
  • 2014-08-20. Ω-deformation and quantization in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987-06. Complete integrability of relativistic Calogero-Moser systems and elliptic function identities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1987-08. Solvable lattice models whose states are dominant integral weights of Ait−1(1) in LETTERS IN MATHEMATICAL PHYSICS
  • 2019-05-28. On monopole bubbling contributions to ’t Hooft loops in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-09-04. On ’t Hooft defects, monopole bubbling and supersymmetric quantum mechanics in JOURNAL OF HIGH ENERGY PHYSICS
  • 1997-08. Ruijsenaars' Commuting Difference Operators as Commuting Transfer Matrices in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-11-04. AN−1 conformal Toda field theory correlation functions from conformal 𝒩 = 2 SU(N) quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-09-10. Index-like theorems from line defect vevs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-11-21. Monopole bubbling via string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-05. Surface defects and elliptic quantum groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-02-15. Gauge theory loop operators and Liouville theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-07-01. Four-Dimensional Wall-Crossing via Three-Dimensional Field Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2021)072

    DOI

    http://dx.doi.org/10.1007/jhep01(2021)072

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1134555242


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.263319.c", 
              "name": [
                "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maruyoshi", 
            "givenName": "Kazunobu", 
            "id": "sg:person.014757666656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS), RIKEN, Wako, 351-0198, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "Department of Physics, Osaka University, Toyonaka, 560-0043, Osaka, Japan", 
                "Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS), RIKEN, Wako, 351-0198, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ota", 
            "givenName": "Toshihiro", 
            "id": "sg:person.012557243751.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557243751.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada", 
                "Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagi", 
            "givenName": "Junya", 
            "id": "sg:person.010537202003.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537202003.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2018)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110152558", 
              "https://doi.org/10.1007/jhep11(2018)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0369-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882223", 
              "https://doi.org/10.1007/s11005-010-0369-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9078-6_119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637182", 
              "https://doi.org/10.1007/978-3-0348-9078-6_119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2017)013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085886131", 
              "https://doi.org/10.1007/jhep06(2017)013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026825461", 
              "https://doi.org/10.1007/jhep02(2010)057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00420302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048223836", 
              "https://doi.org/10.1007/bf00420302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051074521", 
              "https://doi.org/10.1007/jhep01(2010)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01207363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005326555", 
              "https://doi.org/10.1007/bf01207363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2014)112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038690562", 
              "https://doi.org/10.1007/jhep08(2014)112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/11/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036176184", 
              "https://doi.org/10.1088/1126-6708/2009/11/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2018)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106824859", 
              "https://doi.org/10.1007/jhep09(2018)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044645362", 
              "https://doi.org/10.1007/jhep10(2014)062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2019)180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115954019", 
              "https://doi.org/10.1007/jhep05(2019)180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2019)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120961639", 
              "https://doi.org/10.1007/jhep09(2019)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1071-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040539415", 
              "https://doi.org/10.1007/s00220-010-1071-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044576357", 
              "https://doi.org/10.1007/s002200050137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013430875", 
              "https://doi.org/10.1007/jhep01(2012)148"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-01-13", 
        "datePublishedReg": "2021-01-13", 
        "description": "We establish a correspondence between a class of Wilson-\u2019t Hooft lines in four-dimensional N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-\u2019t Hooft lines in a twisted product space S1 \u00d7 \u03f5 \u211d2 \u00d7 \u211d by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep01(2021)072", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6839718", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9315294", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9194924", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "transfer matrix", 
          "quantum integrable systems", 
          "four-dimensional Chern", 
          "supersymmetric gauge theories", 
          "integrable systems", 
          "Verlinde operators", 
          "Toda theories", 
          "circular quivers", 
          "string theory", 
          "L-operators", 
          "vacuum expectation value", 
          "AGT correspondence", 
          "Simons theory", 
          "gauge theory", 
          "Wigner transform", 
          "expectation values", 
          "supersymmetric localization", 
          "theory", 
          "matrix", 
          "Chern", 
          "quivers", 
          "duality", 
          "correspondence", 
          "operators", 
          "class", 
          "system", 
          "setup", 
          "lines", 
          "transform", 
          "values", 
          "variants", 
          "identification", 
          "localization"
        ], 
        "name": "Wilson-\u2019t Hooft lines as transfer matrices", 
        "pagination": "72", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1134555242"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2021)072"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2021)072", 
          "https://app.dimensions.ai/details/publication/pub.1134555242"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_888.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep01(2021)072"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2021)072'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      22 PREDICATES      77 URIs      50 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2021)072 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0105
    4 schema:author N067bacac430d45a6996d75809d65e2c6
    5 schema:citation sg:pub.10.1007/978-3-0348-9078-6_119
    6 sg:pub.10.1007/bf00420302
    7 sg:pub.10.1007/bf01207363
    8 sg:pub.10.1007/jhep01(2010)113
    9 sg:pub.10.1007/jhep01(2012)148
    10 sg:pub.10.1007/jhep02(2010)057
    11 sg:pub.10.1007/jhep05(2019)180
    12 sg:pub.10.1007/jhep06(2017)013
    13 sg:pub.10.1007/jhep08(2012)034
    14 sg:pub.10.1007/jhep08(2014)112
    15 sg:pub.10.1007/jhep09(2018)014
    16 sg:pub.10.1007/jhep09(2019)073
    17 sg:pub.10.1007/jhep10(2014)062
    18 sg:pub.10.1007/jhep11(2018)126
    19 sg:pub.10.1007/s00220-010-1071-2
    20 sg:pub.10.1007/s002200050137
    21 sg:pub.10.1007/s11005-010-0369-5
    22 sg:pub.10.1088/1126-6708/2009/11/002
    23 schema:datePublished 2021-01-13
    24 schema:datePublishedReg 2021-01-13
    25 schema:description We establish a correspondence between a class of Wilson-’t Hooft lines in four-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-’t Hooft lines in a twisted product space S1 × ϵ ℝ2 × ℝ by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N397b3ee15a6144a1ac013bc058cbcffc
    30 N722500b6c9f14d62b440dd0cc57a777c
    31 sg:journal.1052482
    32 schema:keywords AGT correspondence
    33 Chern
    34 L-operators
    35 Simons theory
    36 Toda theories
    37 Verlinde operators
    38 Wigner transform
    39 circular quivers
    40 class
    41 correspondence
    42 duality
    43 expectation values
    44 four-dimensional Chern
    45 gauge theory
    46 identification
    47 integrable systems
    48 lines
    49 localization
    50 matrix
    51 operators
    52 quantum integrable systems
    53 quivers
    54 setup
    55 string theory
    56 supersymmetric gauge theories
    57 supersymmetric localization
    58 system
    59 theory
    60 transfer matrix
    61 transform
    62 vacuum expectation value
    63 values
    64 variants
    65 schema:name Wilson-’t Hooft lines as transfer matrices
    66 schema:pagination 72
    67 schema:productId N5bae801232f1489bb4c81e042e7f9826
    68 N742b893927bd4492bb32206e5aada1fc
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134555242
    70 https://doi.org/10.1007/jhep01(2021)072
    71 schema:sdDatePublished 2022-06-01T22:24
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N357ac42349b640f98067e13cb182ab8b
    74 schema:url https://doi.org/10.1007/jhep01(2021)072
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N067bacac430d45a6996d75809d65e2c6 rdf:first sg:person.014757666656.30
    79 rdf:rest Nde69b7bd564448ccbeb449733d0f6185
    80 N357ac42349b640f98067e13cb182ab8b schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 N397b3ee15a6144a1ac013bc058cbcffc schema:volumeNumber 2021
    83 rdf:type schema:PublicationVolume
    84 N5bae801232f1489bb4c81e042e7f9826 schema:name doi
    85 schema:value 10.1007/jhep01(2021)072
    86 rdf:type schema:PropertyValue
    87 N64dd2b1d631a44e7983f7571b3094e7f rdf:first sg:person.010537202003.01
    88 rdf:rest rdf:nil
    89 N722500b6c9f14d62b440dd0cc57a777c schema:issueNumber 1
    90 rdf:type schema:PublicationIssue
    91 N742b893927bd4492bb32206e5aada1fc schema:name dimensions_id
    92 schema:value pub.1134555242
    93 rdf:type schema:PropertyValue
    94 Nde69b7bd564448ccbeb449733d0f6185 rdf:first sg:person.012557243751.85
    95 rdf:rest N64dd2b1d631a44e7983f7571b3094e7f
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Pure Mathematics
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Mathematical Physics
    104 rdf:type schema:DefinedTerm
    105 sg:grant.6839718 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2021)072
    106 rdf:type schema:MonetaryGrant
    107 sg:grant.9194924 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2021)072
    108 rdf:type schema:MonetaryGrant
    109 sg:grant.9315294 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2021)072
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1052482 schema:issn 1029-8479
    112 1126-6708
    113 schema:name Journal of High Energy Physics
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.010537202003.01 schema:affiliation grid-institutes:grid.12527.33
    117 schema:familyName Yagi
    118 schema:givenName Junya
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537202003.01
    120 rdf:type schema:Person
    121 sg:person.012557243751.85 schema:affiliation grid-institutes:grid.7597.c
    122 schema:familyName Ota
    123 schema:givenName Toshihiro
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557243751.85
    125 rdf:type schema:Person
    126 sg:person.014757666656.30 schema:affiliation grid-institutes:grid.263319.c
    127 schema:familyName Maruyoshi
    128 schema:givenName Kazunobu
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30
    130 rdf:type schema:Person
    131 sg:pub.10.1007/978-3-0348-9078-6_119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637182
    132 https://doi.org/10.1007/978-3-0348-9078-6_119
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf00420302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048223836
    135 https://doi.org/10.1007/bf00420302
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf01207363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005326555
    138 https://doi.org/10.1007/bf01207363
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep01(2010)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051074521
    141 https://doi.org/10.1007/jhep01(2010)113
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep01(2012)148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013430875
    144 https://doi.org/10.1007/jhep01(2012)148
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep02(2010)057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026825461
    147 https://doi.org/10.1007/jhep02(2010)057
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep05(2019)180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115954019
    150 https://doi.org/10.1007/jhep05(2019)180
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep06(2017)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886131
    153 https://doi.org/10.1007/jhep06(2017)013
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    156 https://doi.org/10.1007/jhep08(2012)034
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep08(2014)112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038690562
    159 https://doi.org/10.1007/jhep08(2014)112
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep09(2018)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106824859
    162 https://doi.org/10.1007/jhep09(2018)014
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep09(2019)073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120961639
    165 https://doi.org/10.1007/jhep09(2019)073
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep10(2014)062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044645362
    168 https://doi.org/10.1007/jhep10(2014)062
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep11(2018)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110152558
    171 https://doi.org/10.1007/jhep11(2018)126
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00220-010-1071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040539415
    174 https://doi.org/10.1007/s00220-010-1071-2
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s002200050137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044576357
    177 https://doi.org/10.1007/s002200050137
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
    180 https://doi.org/10.1007/s11005-010-0369-5
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1088/1126-6708/2009/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036176184
    183 https://doi.org/10.1088/1126-6708/2009/11/002
    184 rdf:type schema:CreativeWork
    185 grid-institutes:grid.12527.33 schema:alternateName Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, P.R. China
    186 schema:name Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada
    187 Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, P.R. China
    188 rdf:type schema:Organization
    189 grid-institutes:grid.263319.c schema:alternateName Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan
    190 schema:name Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan
    191 rdf:type schema:Organization
    192 grid-institutes:grid.7597.c schema:alternateName Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS), RIKEN, Wako, 351-0198, Saitama, Japan
    193 schema:name Department of Physics, Osaka University, Toyonaka, 560-0043, Osaka, Japan
    194 Interdisciplinary Theoretical & Mathematical Sciences Program (iTHEMS), RIKEN, Wako, 351-0198, Saitama, Japan
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...