Open strings on the Rindler horizon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01

AUTHORS

Edward Witten

ABSTRACT

It has been proposed that a certain ℤN orbifold, analytically continued in N, can be used to describe the thermodynamics of Rindler space in string theory. In this paper, we attempt to implement this idea for the open-string sector. The most interesting result is that, although the orbifold is tachyonic for positive integer N, the tachyon seems to disappear after analytic continuation to the region that is appropriate for computing Tr ρN, where ρ is the density matrix of Rindler space and Re N> 1. Analytic continuation of the full orbifold conformal field theory remains a challenge, but we find some evidence that if such analytic continuation is possible, the resulting theory is a logarithmic conformal field theory, necessarily nonunitary. More... »

PAGES

126

References to SciGraph publications

  • 2017-09. Entanglement branes in a two-dimensional string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05. Notes on entanglement entropy in string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2019)126

    DOI

    http://dx.doi.org/10.1007/jhep01(2019)126

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111439049


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Witten", 
            "givenName": "Edward", 
            "id": "sg:person.016240210261.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0550-3213(95)00050-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009194405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/46/49/494006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010032045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90528-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014625852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(93)90528-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014625852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.2700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018730658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.2700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018730658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90118-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043341108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(92)90118-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043341108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)90602-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044298643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)90602-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044298643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046240976", 
              "https://doi.org/10.1007/jhep05(2015)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046240976", 
              "https://doi.org/10.1007/jhep05(2015)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(77)90206-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048143111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(77)90206-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048143111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90593-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051487480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(85)90593-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051487480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.121602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.121602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091886688", 
              "https://doi.org/10.1007/jhep09(2017)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.97.066025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101828879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.97.066025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101828879"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "It has been proposed that a certain \u2124N orbifold, analytically continued in N, can be used to describe the thermodynamics of Rindler space in string theory. In this paper, we attempt to implement this idea for the open-string sector. The most interesting result is that, although the orbifold is tachyonic for positive integer N, the tachyon seems to disappear after analytic continuation to the region that is appropriate for computing Tr \u03c1N, where \u03c1 is the density matrix of Rindler space and Re N> 1. Analytic continuation of the full orbifold conformal field theory remains a challenge, but we find some evidence that if such analytic continuation is possible, the resulting theory is a logarithmic conformal field theory, necessarily nonunitary.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep01(2019)126", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "Open strings on the Rindler horizon", 
        "pagination": "126", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ca704e798412027819c52bf75b4eaeb08db869722e9d77fd932809557a27baa3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2019)126"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111439049"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2019)126", 
          "https://app.dimensions.ai/details/publication/pub.1111439049"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000320_0000000320/records_101370_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP01%282019%29126"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2019)126'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2019)126'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2019)126'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2019)126'


     

    This table displays all metadata directly associated to this object as RDF triples.

    99 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2019)126 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N47bd8cbb3c7e4ec899a740b055d514fe
    4 schema:citation sg:pub.10.1007/jhep05(2015)106
    5 sg:pub.10.1007/jhep09(2017)097
    6 https://doi.org/10.1016/0370-2693(88)90602-8
    7 https://doi.org/10.1016/0550-3213(77)90206-1
    8 https://doi.org/10.1016/0550-3213(85)90593-0
    9 https://doi.org/10.1016/0550-3213(92)90118-u
    10 https://doi.org/10.1016/0550-3213(93)90528-w
    11 https://doi.org/10.1016/0550-3213(95)00050-3
    12 https://doi.org/10.1088/1751-8113/46/49/494006
    13 https://doi.org/10.1103/physrevd.50.2700
    14 https://doi.org/10.1103/physrevd.97.066025
    15 https://doi.org/10.1103/physrevlett.115.121602
    16 schema:datePublished 2019-01
    17 schema:datePublishedReg 2019-01-01
    18 schema:description It has been proposed that a certain ℤN orbifold, analytically continued in N, can be used to describe the thermodynamics of Rindler space in string theory. In this paper, we attempt to implement this idea for the open-string sector. The most interesting result is that, although the orbifold is tachyonic for positive integer N, the tachyon seems to disappear after analytic continuation to the region that is appropriate for computing Tr ρN, where ρ is the density matrix of Rindler space and Re N> 1. Analytic continuation of the full orbifold conformal field theory remains a challenge, but we find some evidence that if such analytic continuation is possible, the resulting theory is a logarithmic conformal field theory, necessarily nonunitary.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N5cc156659560420bb0bc05cd5f9ea7e3
    23 Nbc3e1d848a8746059e1685164d5682c5
    24 sg:journal.1052482
    25 schema:name Open strings on the Rindler horizon
    26 schema:pagination 126
    27 schema:productId N9cf0dcef5dd44a5882936b2f756b4ed7
    28 Nd8d82b3f2c5e410c8c897f462d404ab2
    29 Ne2b227e1ddf34d64bf82eabec99b148b
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111439049
    31 https://doi.org/10.1007/jhep01(2019)126
    32 schema:sdDatePublished 2019-04-11T08:41
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Ne50b1f7f594844128cde66af1b4e35c2
    35 schema:url https://link.springer.com/10.1007%2FJHEP01%282019%29126
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N47bd8cbb3c7e4ec899a740b055d514fe rdf:first sg:person.016240210261.17
    40 rdf:rest rdf:nil
    41 N5cc156659560420bb0bc05cd5f9ea7e3 schema:volumeNumber 2019
    42 rdf:type schema:PublicationVolume
    43 N9cf0dcef5dd44a5882936b2f756b4ed7 schema:name dimensions_id
    44 schema:value pub.1111439049
    45 rdf:type schema:PropertyValue
    46 Nbc3e1d848a8746059e1685164d5682c5 schema:issueNumber 1
    47 rdf:type schema:PublicationIssue
    48 Nd8d82b3f2c5e410c8c897f462d404ab2 schema:name readcube_id
    49 schema:value ca704e798412027819c52bf75b4eaeb08db869722e9d77fd932809557a27baa3
    50 rdf:type schema:PropertyValue
    51 Ne2b227e1ddf34d64bf82eabec99b148b schema:name doi
    52 schema:value 10.1007/jhep01(2019)126
    53 rdf:type schema:PropertyValue
    54 Ne50b1f7f594844128cde66af1b4e35c2 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1052482 schema:issn 1029-8479
    63 1126-6708
    64 schema:name Journal of High Energy Physics
    65 rdf:type schema:Periodical
    66 sg:person.016240210261.17 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    67 schema:familyName Witten
    68 schema:givenName Edward
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17
    70 rdf:type schema:Person
    71 sg:pub.10.1007/jhep05(2015)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046240976
    72 https://doi.org/10.1007/jhep05(2015)106
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/jhep09(2017)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091886688
    75 https://doi.org/10.1007/jhep09(2017)097
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1016/0370-2693(88)90602-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298643
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/0550-3213(77)90206-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048143111
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0550-3213(85)90593-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051487480
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0550-3213(92)90118-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341108
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0550-3213(93)90528-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1014625852
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/0550-3213(95)00050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009194405
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1088/1751-8113/46/49/494006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010032045
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1103/physrevd.50.2700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018730658
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1103/physrevd.97.066025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101828879
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrevlett.115.121602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764102
    96 rdf:type schema:CreativeWork
    97 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    98 schema:name School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.
    99 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...