Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

M. N. Chernodub, Shinya Gongyo

ABSTRACT

We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase. More... »

PAGES

136

References to SciGraph publications

  • 2015-09. A study of vorticity formation in high energy nuclear collisions in THE EUROPEAN PHYSICAL JOURNAL C
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2017)136

    DOI

    http://dx.doi.org/10.1007/jhep01(2017)136

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083406769


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Far Eastern Federal University", 
              "id": "https://www.grid.ac/institutes/grid.440624.0", 
              "name": [
                "CNRS, Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique, Universit\u00e9 de Tours, Tours, France", 
                "Laboratory of Physics of Living Matter, Far Eastern Federal University, Vladivostok, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chernodub", 
            "givenName": "M. N.", 
            "id": "sg:person.010306364071.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RIKEN", 
              "id": "https://www.grid.ac/institutes/grid.7597.c", 
              "name": [
                "CNRS, Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique, Universit\u00e9 de Tours, Tours, France", 
                "Theoretical Research Division, Nishina Center, RIKEN, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gongyo", 
            "givenName": "Shinya", 
            "id": "sg:person.014314170011.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314170011.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevb.89.081407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000062574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.081407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000062574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2014.05.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002082906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.70.074018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005955688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.70.074018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005955688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.191601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007889099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.191601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007889099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.081601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013073766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.081601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013073766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.1405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013753140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.1405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013753140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2016.06.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018807263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.122.345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021709972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.122.345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021709972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.085003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021811931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.085003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021811931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.53.4382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021962225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.53.4382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021962225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aop.2008.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026169416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.035142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026635026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.035142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026635026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.67.044002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028008516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.67.044002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028008516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2016.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031526734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90330-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031598913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90330-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031598913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.105007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034612681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.105007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034612681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-015-3624-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036280809", 
              "https://doi.org/10.1140/epjc/s10052-015-3624-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-015-3624-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036280809", 
              "https://doi.org/10.1140/epjc/s10052-015-3624-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.075124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036674236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.075124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036674236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038093814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.124.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044525774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.124.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044525774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.87.034906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046313176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.87.034906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046313176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.025013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047190770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.025013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047190770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2016.02.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047642175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2016.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048595507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2015.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049457645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/26/12/035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059072986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.93.064907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060681230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.93.064907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060681230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.94.044910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060681581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.94.044910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060681581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.20.1807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.20.1807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.21.2260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.21.2260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.26.1900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060689884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.26.1900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060689884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.104014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.104014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.104052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.104052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.192302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.192302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766655"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01", 
        "datePublishedReg": "2017-01-01", 
        "description": "We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (\u201ccold vacuum cannot rotate\u201d). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep01(2017)136", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "name": "Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics", 
        "pagination": "136", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1170e15ba7161584aa520d65d561948cefc395e0c9fc4ebbe65c3a1366afeb6b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2017)136"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083406769"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2017)136", 
          "https://app.dimensions.ai/details/publication/pub.1083406769"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88233_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP01%282017%29136"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2017)136'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2017)136'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2017)136'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2017)136'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2017)136 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N2ac8159db6db4b68add5f2a1f0b649eb
    4 schema:citation sg:pub.10.1140/epjc/s10052-015-3624-1
    5 https://doi.org/10.1016/0370-2693(78)90330-1
    6 https://doi.org/10.1016/j.aop.2008.01.001
    7 https://doi.org/10.1016/j.nuclphysb.2014.08.011
    8 https://doi.org/10.1016/j.nuclphysb.2016.02.027
    9 https://doi.org/10.1016/j.nuclphysb.2016.08.001
    10 https://doi.org/10.1016/j.physletb.2014.05.031
    11 https://doi.org/10.1016/j.physletb.2016.06.054
    12 https://doi.org/10.1016/j.physletb.2016.11.010
    13 https://doi.org/10.1016/j.physrep.2015.02.003
    14 https://doi.org/10.1088/0305-4470/26/12/035
    15 https://doi.org/10.1103/physrev.122.345
    16 https://doi.org/10.1103/physrev.124.246
    17 https://doi.org/10.1103/physrevb.89.035142
    18 https://doi.org/10.1103/physrevb.89.075124
    19 https://doi.org/10.1103/physrevb.89.081407
    20 https://doi.org/10.1103/physrevc.87.034906
    21 https://doi.org/10.1103/physrevc.93.064907
    22 https://doi.org/10.1103/physrevc.94.044910
    23 https://doi.org/10.1103/physrevd.20.1807
    24 https://doi.org/10.1103/physrevd.21.2260
    25 https://doi.org/10.1103/physrevd.26.1900
    26 https://doi.org/10.1103/physrevd.53.4382
    27 https://doi.org/10.1103/physrevd.67.044002
    28 https://doi.org/10.1103/physrevd.70.074018
    29 https://doi.org/10.1103/physrevd.78.105007
    30 https://doi.org/10.1103/physrevd.83.085003
    31 https://doi.org/10.1103/physrevd.84.025013
    32 https://doi.org/10.1103/physrevd.93.104014
    33 https://doi.org/10.1103/physrevd.93.104052
    34 https://doi.org/10.1103/physrevlett.103.191601
    35 https://doi.org/10.1103/physrevlett.111.081601
    36 https://doi.org/10.1103/physrevlett.117.192302
    37 https://doi.org/10.1103/physrevlett.76.1405
    38 schema:datePublished 2017-01
    39 schema:datePublishedReg 2017-01-01
    40 schema:description We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N34e61cbc442644ab9b0c0770a664821c
    45 N4b64c8bf385d4fca84539beb21a6bc5a
    46 sg:journal.1052482
    47 schema:name Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
    48 schema:pagination 136
    49 schema:productId N54caba010c9246439f78e38be33ffb31
    50 N7816dbd10d0e4b16ae7c74e93646bdd9
    51 N8e3350f26cba4cbfa4355434ae8ef053
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083406769
    53 https://doi.org/10.1007/jhep01(2017)136
    54 schema:sdDatePublished 2019-04-11T13:09
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nc2c6d2286f0a43aa8c7a82e7f0e15a17
    57 schema:url https://link.springer.com/10.1007%2FJHEP01%282017%29136
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N2ac8159db6db4b68add5f2a1f0b649eb rdf:first sg:person.010306364071.34
    62 rdf:rest N94a0904a81c64cd4aa2e7bef6309dde8
    63 N34e61cbc442644ab9b0c0770a664821c schema:issueNumber 1
    64 rdf:type schema:PublicationIssue
    65 N4b64c8bf385d4fca84539beb21a6bc5a schema:volumeNumber 2017
    66 rdf:type schema:PublicationVolume
    67 N54caba010c9246439f78e38be33ffb31 schema:name readcube_id
    68 schema:value 1170e15ba7161584aa520d65d561948cefc395e0c9fc4ebbe65c3a1366afeb6b
    69 rdf:type schema:PropertyValue
    70 N7816dbd10d0e4b16ae7c74e93646bdd9 schema:name doi
    71 schema:value 10.1007/jhep01(2017)136
    72 rdf:type schema:PropertyValue
    73 N8e3350f26cba4cbfa4355434ae8ef053 schema:name dimensions_id
    74 schema:value pub.1083406769
    75 rdf:type schema:PropertyValue
    76 N94a0904a81c64cd4aa2e7bef6309dde8 rdf:first sg:person.014314170011.30
    77 rdf:rest rdf:nil
    78 Nc2c6d2286f0a43aa8c7a82e7f0e15a17 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Physical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Other Physical Sciences
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1052482 schema:issn 1029-8479
    87 1126-6708
    88 schema:name Journal of High Energy Physics
    89 rdf:type schema:Periodical
    90 sg:person.010306364071.34 schema:affiliation https://www.grid.ac/institutes/grid.440624.0
    91 schema:familyName Chernodub
    92 schema:givenName M. N.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34
    94 rdf:type schema:Person
    95 sg:person.014314170011.30 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
    96 schema:familyName Gongyo
    97 schema:givenName Shinya
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014314170011.30
    99 rdf:type schema:Person
    100 sg:pub.10.1140/epjc/s10052-015-3624-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036280809
    101 https://doi.org/10.1140/epjc/s10052-015-3624-1
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/0370-2693(78)90330-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031598913
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.aop.2008.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026169416
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.nuclphysb.2014.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038093814
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.nuclphysb.2016.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047642175
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.nuclphysb.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048595507
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.physletb.2014.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002082906
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.physletb.2016.06.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018807263
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.physletb.2016.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031526734
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.physrep.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049457645
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1088/0305-4470/26/12/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059072986
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrev.122.345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021709972
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrev.124.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044525774
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevb.89.035142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026635026
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevb.89.075124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036674236
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevb.89.081407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000062574
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevc.87.034906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046313176
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevc.93.064907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060681230
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevc.94.044910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060681581
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevd.20.1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687432
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevd.21.2260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687894
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevd.26.1900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689884
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevd.53.4382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021962225
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevd.67.044002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028008516
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevd.70.074018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005955688
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevd.78.105007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034612681
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevd.83.085003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021811931
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevd.84.025013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047190770
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevd.93.104014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060712794
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevd.93.104052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060712830
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevlett.103.191601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007889099
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevlett.111.081601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013073766
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevlett.117.192302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766655
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevlett.76.1405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013753140
    168 rdf:type schema:CreativeWork
    169 https://www.grid.ac/institutes/grid.440624.0 schema:alternateName Far Eastern Federal University
    170 schema:name CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Tours, France
    171 Laboratory of Physics of Living Matter, Far Eastern Federal University, Vladivostok, Russia
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
    174 schema:name CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours, Tours, France
    175 Theoretical Research Division, Nishina Center, RIKEN, Saitama, Japan
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...