Compactifications of deformed conifolds, branes and the geometry of qubits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

M. Cvetič, G. W. Gibbons, C. N. Pope

ABSTRACT

We present three families of exact, cohomogeneity-one Einstein metrics in (2n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces ℂℙn+1, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V2ℝn+2=SOn+2/SOn divided by ℤ2. The second family are also Einstein-Kähler metrics, now on the Grassmannian manifolds G2ℝn+3=SOn+3/SOn+1×SO2, whose principal orbits are the Stiefel manifolds V2ℝn+2 (with no ℤ2 factoring in this case). The third family are Einstein metrics on the product manifolds Sn+1 × Sn+1, and are Kähler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the Kähler geometry of Fubini-Study metrics on ℂℙn+1, and we apply the formalism to study the quantum entanglement of qubits. More... »

PAGES

135

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep01(2016)135

DOI

http://dx.doi.org/10.1007/jhep01(2016)135

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010394924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maribor", 
          "id": "https://www.grid.ac/institutes/grid.8647.d", 
          "name": [
            "Department of Physics and Astronomy, University of Pennsylvania, 19104, Philadelphia, PA, U.S.A.", 
            "Center for Applied Mathematics and Theoretical Physics, University of Maribor, SI2000, Maribor, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cveti\u010d", 
        "givenName": "M.", 
        "id": "sg:person.012222536305.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fran\u00e7ois Rabelais University", 
          "id": "https://www.grid.ac/institutes/grid.12366.30", 
          "name": [
            "Department of Physics and Astronomy, University of Pennsylvania, 19104, Philadelphia, PA, U.S.A.", 
            "DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.", 
            "Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique CNRS-UMR 7350, F\u00e9d\u00e9ration Denis Poisson, Universit\u00e9 Fran\u00e7ois-Rabelais Tours, Parc de Grandmont, 37200, Tours, France", 
            "LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gibbons", 
        "givenName": "G. W.", 
        "id": "sg:person.0761046650.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.", 
            "George P. & Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843-4242, College Station, TX, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pope", 
        "givenName": "C. N.", 
        "id": "sg:person.07512552121.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep04(2014)010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000212825", 
          "https://doi.org/10.1007/jhep04(2014)010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0393-0440(00)00052-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001545525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/2/4/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2010.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006063961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/17/3/033048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009255360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03026543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010082432", 
          "https://doi.org/10.1007/bf03026543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03026543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010082432", 
          "https://doi.org/10.1007/bf03026543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0393-0440(02)00227-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010971636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0393-0440(02)00227-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010971636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/1/5/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015433105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016648113", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4771-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016648113", 
          "https://doi.org/10.1007/978-0-8176-4771-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4771-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016648113", 
          "https://doi.org/10.1007/978-0-8176-4771-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00708-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016916435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0393-0440(92)90046-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019746955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/20/19/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019754783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1927.0039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019932507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020861207", 
          "https://doi.org/10.1007/bf02104500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020861207", 
          "https://doi.org/10.1007/bf02104500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1410-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020936151", 
          "https://doi.org/10.1007/s00220-005-1410-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1410-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020936151", 
          "https://doi.org/10.1007/s00220-005-1410-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-002-0730-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027948326", 
          "https://doi.org/10.1007/s00220-002-0730-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/17/20/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029888988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2015)026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030605222", 
          "https://doi.org/10.1007/jhep08(2015)026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(78)90899-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031877747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(78)90899-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031877747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90577-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033730191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90577-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033730191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/19/18/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035147340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.76.025017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036311527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.76.025017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036311527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2015)165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037336900", 
          "https://doi.org/10.1007/jhep07(2015)165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2015)165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037336900", 
          "https://doi.org/10.1007/jhep07(2015)165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/16.2.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038472811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/29/22/224008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042885652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/37/1/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044828682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046088768", 
          "https://doi.org/10.1007/bf01197188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01197188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046088768", 
          "https://doi.org/10.1007/bf01197188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01342433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047500975", 
          "https://doi.org/10.1007/bf01342433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(01)00625-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048029232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01225149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051067406", 
          "https://doi.org/10.1007/bf01225149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01225149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051067406", 
          "https://doi.org/10.1007/bf01225149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01940766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053589312", 
          "https://doi.org/10.1007/bf01940766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01940766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053589312", 
          "https://doi.org/10.1007/bf01940766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100072273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054054475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01988004902018700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.70.460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.70.460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.88.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.88.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.53.5619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060703438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.53.5619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060703438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.53.r584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060703511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.53.r584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060703511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.38.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.38.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470317006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496286", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496286", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "We present three families of exact, cohomogeneity-one Einstein metrics in (2n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces \u2102\u2119n+1, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V2\u211dn+2=SOn+2/SOn divided by \u21242. The second family are also Einstein-K\u00e4hler metrics, now on the Grassmannian manifolds G2\u211dn+3=SOn+3/SOn+1\u00d7SO2, whose principal orbits are the Stiefel manifolds V2\u211dn+2 (with no \u21242 factoring in this case). The third family are Einstein metrics on the product manifolds Sn+1 \u00d7 Sn+1, and are K\u00e4hler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the K\u00e4hler geometry of Fubini-Study metrics on \u2102\u2119n+1, and we apply the formalism to study the quantum entanglement of qubits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep01(2016)135", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3863001", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "name": "Compactifications of deformed conifolds, branes and the geometry of qubits", 
    "pagination": "135", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3185c21b0ebf392d8276c82d57416bda152f5e344cfff9c7c83bab7ce7a4d3a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep01(2016)135"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010394924"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep01(2016)135", 
      "https://app.dimensions.ai/details/publication/pub.1010394924"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000582.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FJHEP01%282016%29135"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)135'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)135'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)135'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)135'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep01(2016)135 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ned30f9dd231447e8977a0aa553625727
4 schema:citation sg:pub.10.1007/978-0-8176-4771-1
5 sg:pub.10.1007/bf01197188
6 sg:pub.10.1007/bf01225149
7 sg:pub.10.1007/bf01342433
8 sg:pub.10.1007/bf01940766
9 sg:pub.10.1007/bf02104500
10 sg:pub.10.1007/bf03026543
11 sg:pub.10.1007/jhep04(2014)010
12 sg:pub.10.1007/jhep07(2015)165
13 sg:pub.10.1007/jhep08(2015)026
14 sg:pub.10.1007/s00220-002-0730-3
15 sg:pub.10.1007/s00220-005-1410-x
16 https://app.dimensions.ai/details/publication/pub.1016648113
17 https://app.dimensions.ai/details/publication/pub.1109496286
18 https://doi.org/10.1002/9780470317006
19 https://doi.org/10.1016/0370-2693(78)90899-7
20 https://doi.org/10.1016/0393-0440(92)90046-4
21 https://doi.org/10.1016/0550-3213(90)90577-z
22 https://doi.org/10.1016/j.geomphys.2010.12.008
23 https://doi.org/10.1016/s0370-2693(01)00625-6
24 https://doi.org/10.1016/s0393-0440(00)00052-8
25 https://doi.org/10.1016/s0393-0440(02)00227-9
26 https://doi.org/10.1016/s0550-3213(00)00708-2
27 https://doi.org/10.1017/s0305004100072273
28 https://doi.org/10.1051/jphys:01988004902018700
29 https://doi.org/10.1088/0264-9381/1/5/005
30 https://doi.org/10.1088/0264-9381/17/20/305
31 https://doi.org/10.1088/0264-9381/19/18/303
32 https://doi.org/10.1088/0264-9381/2/4/022
33 https://doi.org/10.1088/0264-9381/20/19/308
34 https://doi.org/10.1088/0264-9381/29/22/224008
35 https://doi.org/10.1088/0305-4470/37/1/017
36 https://doi.org/10.1088/1367-2630/17/3/033048
37 https://doi.org/10.1098/rspa.1927.0039
38 https://doi.org/10.1103/physrev.70.460
39 https://doi.org/10.1103/physrev.88.101
40 https://doi.org/10.1103/physrevd.53.5619
41 https://doi.org/10.1103/physrevd.53.r584
42 https://doi.org/10.1103/physrevd.76.025017
43 https://doi.org/10.1103/physrevlett.65.1697
44 https://doi.org/10.1103/revmodphys.38.36
45 https://doi.org/10.1112/blms/16.2.81
46 schema:datePublished 2016-01
47 schema:datePublishedReg 2016-01-01
48 schema:description We present three families of exact, cohomogeneity-one Einstein metrics in (2n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces ℂℙn+1, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V2ℝn+2=SOn+2/SOn divided by ℤ2. The second family are also Einstein-Kähler metrics, now on the Grassmannian manifolds G2ℝn+3=SOn+3/SOn+1×SO2, whose principal orbits are the Stiefel manifolds V2ℝn+2 (with no ℤ2 factoring in this case). The third family are Einstein metrics on the product manifolds Sn+1 × Sn+1, and are Kähler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the Kähler geometry of Fubini-Study metrics on ℂℙn+1, and we apply the formalism to study the quantum entanglement of qubits.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N14d60ab660e947c8b98205c11c9c868d
53 Ne507f1848d854f74b8e491dc24c4ff53
54 sg:journal.1052482
55 schema:name Compactifications of deformed conifolds, branes and the geometry of qubits
56 schema:pagination 135
57 schema:productId N1d717ea3ae4248a7b88210d48a82e130
58 N3ecad54fab1643c9921007770dc8b60b
59 N72954e7546a94cf192c097597b40f772
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010394924
61 https://doi.org/10.1007/jhep01(2016)135
62 schema:sdDatePublished 2019-04-10T20:57
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N499cb185812a4298891397be78855e6e
65 schema:url http://link.springer.com/10.1007%2FJHEP01%282016%29135
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N068de984430641d5ba72b08692730ab7 rdf:first sg:person.0761046650.29
70 rdf:rest N21fc2675c9824f99827336d5dfa2e1b1
71 N14d60ab660e947c8b98205c11c9c868d schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N1d717ea3ae4248a7b88210d48a82e130 schema:name doi
74 schema:value 10.1007/jhep01(2016)135
75 rdf:type schema:PropertyValue
76 N21fc2675c9824f99827336d5dfa2e1b1 rdf:first sg:person.07512552121.35
77 rdf:rest rdf:nil
78 N3ecad54fab1643c9921007770dc8b60b schema:name dimensions_id
79 schema:value pub.1010394924
80 rdf:type schema:PropertyValue
81 N499cb185812a4298891397be78855e6e schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N72954e7546a94cf192c097597b40f772 schema:name readcube_id
84 schema:value 3185c21b0ebf392d8276c82d57416bda152f5e344cfff9c7c83bab7ce7a4d3a9
85 rdf:type schema:PropertyValue
86 Ne507f1848d854f74b8e491dc24c4ff53 schema:volumeNumber 2016
87 rdf:type schema:PublicationVolume
88 Ned30f9dd231447e8977a0aa553625727 rdf:first sg:person.012222536305.19
89 rdf:rest N068de984430641d5ba72b08692730ab7
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:grant.3863001 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2016)135
97 rdf:type schema:MonetaryGrant
98 sg:journal.1052482 schema:issn 1029-8479
99 1126-6708
100 schema:name Journal of High Energy Physics
101 rdf:type schema:Periodical
102 sg:person.012222536305.19 schema:affiliation https://www.grid.ac/institutes/grid.8647.d
103 schema:familyName Cvetič
104 schema:givenName M.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19
106 rdf:type schema:Person
107 sg:person.07512552121.35 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
108 schema:familyName Pope
109 schema:givenName C. N.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35
111 rdf:type schema:Person
112 sg:person.0761046650.29 schema:affiliation https://www.grid.ac/institutes/grid.12366.30
113 schema:familyName Gibbons
114 schema:givenName G. W.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761046650.29
116 rdf:type schema:Person
117 sg:pub.10.1007/978-0-8176-4771-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016648113
118 https://doi.org/10.1007/978-0-8176-4771-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01197188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046088768
121 https://doi.org/10.1007/bf01197188
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01225149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051067406
124 https://doi.org/10.1007/bf01225149
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01342433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047500975
127 https://doi.org/10.1007/bf01342433
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf01940766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053589312
130 https://doi.org/10.1007/bf01940766
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02104500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020861207
133 https://doi.org/10.1007/bf02104500
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf03026543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010082432
136 https://doi.org/10.1007/bf03026543
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/jhep04(2014)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000212825
139 https://doi.org/10.1007/jhep04(2014)010
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/jhep07(2015)165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037336900
142 https://doi.org/10.1007/jhep07(2015)165
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/jhep08(2015)026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030605222
145 https://doi.org/10.1007/jhep08(2015)026
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00220-002-0730-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027948326
148 https://doi.org/10.1007/s00220-002-0730-3
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00220-005-1410-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020936151
151 https://doi.org/10.1007/s00220-005-1410-x
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1016648113 schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1109496286 schema:CreativeWork
155 https://doi.org/10.1002/9780470317006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496286
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0370-2693(78)90899-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031877747
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0393-0440(92)90046-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019746955
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0550-3213(90)90577-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033730191
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.geomphys.2010.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006063961
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0370-2693(01)00625-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048029232
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0393-0440(00)00052-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001545525
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0393-0440(02)00227-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010971636
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0550-3213(00)00708-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916435
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1017/s0305004100072273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054054475
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1051/jphys:01988004902018700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991971
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1088/0264-9381/1/5/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015433105
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0264-9381/17/20/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029888988
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/0264-9381/19/18/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035147340
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/0264-9381/2/4/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355603
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1088/0264-9381/20/19/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019754783
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1088/0264-9381/29/22/224008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042885652
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1088/0305-4470/37/1/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044828682
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/1367-2630/17/3/033048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009255360
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1098/rspa.1927.0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019932507
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrev.70.460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060452918
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrev.88.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459717
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevd.53.5619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060703438
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevd.53.r584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060703511
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevd.76.025017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036311527
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.65.1697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801257
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/revmodphys.38.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838477
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1112/blms/16.2.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472811
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.12366.30 schema:alternateName François Rabelais University
212 schema:name DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.
213 Department of Physics and Astronomy, University of Pennsylvania, 19104, Philadelphia, PA, U.S.A.
214 LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans, France
215 Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Fédération Denis Poisson, Université François-Rabelais Tours, Parc de Grandmont, 37200, Tours, France
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
218 schema:name DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.
219 George P. & Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843-4242, College Station, TX, U.S.A.
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.8647.d schema:alternateName University of Maribor
222 schema:name Center for Applied Mathematics and Theoretical Physics, University of Maribor, SI2000, Maribor, Slovenia
223 Department of Physics and Astronomy, University of Pennsylvania, 19104, Philadelphia, PA, U.S.A.
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...