Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

M. N. Chernodub

ABSTRACT

We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves. More... »

PAGES

100

References to SciGraph publications

  • 2013. Anomalous Transport from Kubo Formulae in STRONGLY INTERACTING MATTER IN MAGNETIC FIELDS
  • 2011-09. Holographic gravitational anomaly and chiral vortical effect in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05. Anomalous transport effects and possible environmental symmetry ‘violation’ in heavy-ion collisions in PRAMANA
  • 2011-01. Hydrodynamics from charged black branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-01-30. Anomalous hydrodynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-03. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 in NATURE MATERIALS
  • 2009-01-20. Fluid dynamics of R-charged black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • Journal

    TITLE

    Journal of High Energy Physics

    ISSUE

    1

    VOLUME

    2016

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2016)100

    DOI

    http://dx.doi.org/10.1007/jhep01(2016)100

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036042380


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ghent University", 
              "id": "https://www.grid.ac/institutes/grid.5342.0", 
              "name": [
                "CNRS, Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique, Universit\u00e9 de Tours, 37200, Tours, France", 
                "Soft Matter Physics Laboratory, Far Eastern Federal University, Sukhanova 8, Vladivostok, Russia", 
                "Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chernodub", 
            "givenName": "M. N.", 
            "id": "sg:person.010306364071.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevb.89.081407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000062574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.081407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000062574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-37305-3_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001667745", 
              "https://doi.org/10.1007/978-3-642-37305-3_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.70.074018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005955688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.70.074018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005955688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.191601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007889099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.191601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007889099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009726384", 
              "https://doi.org/10.1007/jhep09(2011)121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.085007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010379642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.085007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010379642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010845176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010845176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ppnp.2014.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014389237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.81.3503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015073999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.81.3503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015073999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysa.2008.02.298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016152607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12043-015-0984-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019903584", 
              "https://doi.org/10.1007/s12043-015-0984-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.085003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021811931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.085003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021811931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.126004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026065180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.126004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026065180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.071501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026888031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.071501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026888031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.125014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030086248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.125014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030086248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.62.025014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031046411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.62.025014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031046411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.031301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031852571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.031301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031852571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.052303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033046643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.052303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033046643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.045011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034639668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.045011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034639668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.045011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034639668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2011)094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037595311", 
              "https://doi.org/10.1007/jhep01(2011)094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.232302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037911841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.232302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037911841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/01/055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041683268", 
              "https://doi.org/10.1088/1126-6708/2009/01/055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysa.2007.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043699766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2005.11.075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050604798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050812169", 
              "https://doi.org/10.1038/nmat4143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051609681", 
              "https://doi.org/10.1088/1126-6708/2006/01/158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051609681", 
              "https://doi.org/10.1088/1126-6708/2006/01/158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.89.044909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052169744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.89.044909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052169744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.021601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052645624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.021601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052645624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2010/08/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052993552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2010/08/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052993552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/159706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058490996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.20.1807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.20.1807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060687432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.22.3080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.22.3080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.92.071501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060710702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.92.071501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060710702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.252302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.252302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.141601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.141601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764174"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-01", 
        "datePublishedReg": "2016-01-01", 
        "description": "We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves \u2014 which are coherent fluctuations of the vector, axial and energy currents \u2014 have generally different velocities compared to the velocities of the individual waves.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep01(2016)100", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "name": "Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media", 
        "pagination": "100", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "abb147afed2139eaef3e79f33b52481c0fcd41872aea2dc3309018cf18b295f1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2016)100"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036042380"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2016)100", 
          "https://app.dimensions.ai/details/publication/pub.1036042380"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000482.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP01(2016)100"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)100'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)100'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)100'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2016)100'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2016)100 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N01da7a66c7eb44edac616091e2677169
    4 schema:citation sg:pub.10.1007/978-3-642-37305-3_17
    5 sg:pub.10.1007/jhep01(2011)094
    6 sg:pub.10.1007/jhep09(2011)121
    7 sg:pub.10.1007/s12043-015-0984-x
    8 sg:pub.10.1038/nmat4143
    9 sg:pub.10.1088/1126-6708/2006/01/158
    10 sg:pub.10.1088/1126-6708/2009/01/055
    11 https://doi.org/10.1016/j.nuclphysa.2007.10.001
    12 https://doi.org/10.1016/j.nuclphysa.2008.02.298
    13 https://doi.org/10.1016/j.physletb.2005.11.075
    14 https://doi.org/10.1016/j.ppnp.2014.01.002
    15 https://doi.org/10.1086/159706
    16 https://doi.org/10.1088/1475-7516/2010/08/010
    17 https://doi.org/10.1103/physrevb.89.081407
    18 https://doi.org/10.1103/physrevc.89.044909
    19 https://doi.org/10.1103/physrevd.20.1807
    20 https://doi.org/10.1103/physrevd.22.3080
    21 https://doi.org/10.1103/physrevd.62.025014
    22 https://doi.org/10.1103/physrevd.70.074018
    23 https://doi.org/10.1103/physrevd.72.045011
    24 https://doi.org/10.1103/physrevd.83.085003
    25 https://doi.org/10.1103/physrevd.83.085007
    26 https://doi.org/10.1103/physrevd.88.071501
    27 https://doi.org/10.1103/physrevd.90.126004
    28 https://doi.org/10.1103/physrevd.91.125014
    29 https://doi.org/10.1103/physrevd.92.071501
    30 https://doi.org/10.1103/physrevlett.103.191601
    31 https://doi.org/10.1103/physrevlett.107.021601
    32 https://doi.org/10.1103/physrevlett.107.052303
    33 https://doi.org/10.1103/physrevlett.108.031301
    34 https://doi.org/10.1103/physrevlett.110.232302
    35 https://doi.org/10.1103/physrevlett.114.252302
    36 https://doi.org/10.1103/physrevlett.115.141601
    37 https://doi.org/10.1103/physrevlett.81.3503
    38 https://doi.org/10.1103/physrevx.5.031023
    39 schema:datePublished 2016-01
    40 schema:datePublishedReg 2016-01-01
    41 schema:description We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N65d5d0d4080745d3a67a1ba92dfd3aec
    46 N6a601d37b4754113918bcf323ed40896
    47 sg:journal.1052482
    48 schema:name Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media
    49 schema:pagination 100
    50 schema:productId N66455c7b249b44f48c1a6907552ecb8e
    51 N90745410f4c74fa8ba2916c6e49d4efd
    52 N93d41b0f94d44003a24b1f65111db688
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036042380
    54 https://doi.org/10.1007/jhep01(2016)100
    55 schema:sdDatePublished 2019-04-11T01:52
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N6379663eb3e24e238b90a96a813cdde9
    58 schema:url http://link.springer.com/10.1007/JHEP01(2016)100
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N01da7a66c7eb44edac616091e2677169 rdf:first sg:person.010306364071.34
    63 rdf:rest rdf:nil
    64 N6379663eb3e24e238b90a96a813cdde9 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N65d5d0d4080745d3a67a1ba92dfd3aec schema:volumeNumber 2016
    67 rdf:type schema:PublicationVolume
    68 N66455c7b249b44f48c1a6907552ecb8e schema:name readcube_id
    69 schema:value abb147afed2139eaef3e79f33b52481c0fcd41872aea2dc3309018cf18b295f1
    70 rdf:type schema:PropertyValue
    71 N6a601d37b4754113918bcf323ed40896 schema:issueNumber 1
    72 rdf:type schema:PublicationIssue
    73 N90745410f4c74fa8ba2916c6e49d4efd schema:name doi
    74 schema:value 10.1007/jhep01(2016)100
    75 rdf:type schema:PropertyValue
    76 N93d41b0f94d44003a24b1f65111db688 schema:name dimensions_id
    77 schema:value pub.1036042380
    78 rdf:type schema:PropertyValue
    79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Engineering
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Interdisciplinary Engineering
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1052482 schema:issn 1029-8479
    86 1126-6708
    87 schema:name Journal of High Energy Physics
    88 rdf:type schema:Periodical
    89 sg:person.010306364071.34 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
    90 schema:familyName Chernodub
    91 schema:givenName M. N.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306364071.34
    93 rdf:type schema:Person
    94 sg:pub.10.1007/978-3-642-37305-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667745
    95 https://doi.org/10.1007/978-3-642-37305-3_17
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/jhep01(2011)094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037595311
    98 https://doi.org/10.1007/jhep01(2011)094
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/jhep09(2011)121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009726384
    101 https://doi.org/10.1007/jhep09(2011)121
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s12043-015-0984-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019903584
    104 https://doi.org/10.1007/s12043-015-0984-x
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1038/nmat4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812169
    107 https://doi.org/10.1038/nmat4143
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1088/1126-6708/2006/01/158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051609681
    110 https://doi.org/10.1088/1126-6708/2006/01/158
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1088/1126-6708/2009/01/055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041683268
    113 https://doi.org/10.1088/1126-6708/2009/01/055
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.nuclphysa.2007.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043699766
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.nuclphysa.2008.02.298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016152607
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/j.physletb.2005.11.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050604798
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.ppnp.2014.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014389237
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1086/159706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058490996
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1088/1475-7516/2010/08/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052993552
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevb.89.081407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000062574
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevc.89.044909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052169744
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevd.20.1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687432
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevd.22.3080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688438
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevd.62.025014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031046411
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevd.70.074018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005955688
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevd.72.045011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034639668
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevd.83.085003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021811931
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevd.83.085007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010379642
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevd.88.071501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026888031
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevd.90.126004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026065180
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevd.91.125014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030086248
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevd.92.071501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060710702
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevlett.103.191601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007889099
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevlett.107.021601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645624
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevlett.107.052303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033046643
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevlett.108.031301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031852571
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevlett.110.232302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037911841
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevlett.114.252302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763744
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevlett.115.141601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764174
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevlett.81.3503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015073999
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevx.5.031023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845176
    170 rdf:type schema:CreativeWork
    171 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
    172 schema:name CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours, 37200, Tours, France
    173 Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, Gent, Belgium
    174 Soft Matter Physics Laboratory, Far Eastern Federal University, Sukhanova 8, Vladivostok, Russia
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...