Supersymmetric gauge theory, (2,0) theory and twisted 5d Super-Yang-Mills View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-24

AUTHORS

Kazuya Yonekura

ABSTRACT

Twisted compactification of the 6d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = (2, 0) theories on a punctured Riemann surface give a large class of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 gauge theories, called class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document}. We argue that nonperturbative dynamics of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories are described by 5d maximal Super-Yang-Mills (SYM) twisted on the Riemann surface. In a sense, twisted 5d SYM might be regarded as a “Lagrangian” for class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^{1,2 }}\times {S^1} $\end{document}. First, we show that twisted 5d SYM gives generalized Hitchin’s equations which was proposed recently. Then, we discuss how to identify chiral operators with quantities in twisted 5d SYM. Mesons, or holomorphic moment maps, are identified with operators at punctures which are realized as 3d superconformal theories Tρ[G] coupled to twisted 5d SYM. “Baryons” are identified qualitatively through a study of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 Higgs branches. We also derive a simple formula for dynamical superpotential vev which is relevant for BPS domain wall tensions. With these tools, we examine many examples of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 theories with several phases such as confining, Higgs, and Coulomb phases, and show perfect agreements between field theories and twisted 5d SYM. Spectral curve is an essential tool to solve generalized Hitchin’s equations, and our results clarify the physical information encoded in the curve. More... »

PAGES

142

References to SciGraph publications

  • 2013-08-05. 3d TQFT from 6d SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-30. Quarter-BPS AdS5 solutions in M-theory with a T2 bundle over a Riemann surface in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-12-01. Argyres-Seiberg Duality and the Higgs Branch in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-07-11. Supersymmetric M5 brane theories on R × CP2 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06-13. New =1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-29. N3-behavior from 5D Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-28. Twisted supersymmetric 5D Yang-Mills theory and contact geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 1988-09. Topological quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-02-13. Wild quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-30. The gravity duals of superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987-12. Hyperkähler metrics and supersymmetry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-07-05. curves for trifundamentals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-12-06. 3d Chern-Simons theory from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-02-15. Tri-vertices and SU(2)’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-01-19. M5-Branes, D4-Branes and quantum 5D super-Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03-08. Spectral Networks in ANNALES HENRI POINCARÉ
  • 2011-12-07. On instantons as Kaluza-Klein modes of M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-31. =1 geometries via M-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-20. 3d dualities from 4d dualities for orthogonal groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-02. Generalized Hitchin system, spectral curve and =1 dynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-30. The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-17. New superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-04. One dyonic instanton in 5d maximal SYM theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-24. 3d dualities from 4d dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06-01. Four-dimensional SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-15. General Argyres-Douglas theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-21. Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-01. =1 dynamics with TN theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-28. M5-branes from gauge theories on the 5-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-02-13. Supersymmetric Boundary Conditions in Super Yang-Mills Theory in JOURNAL OF STATISTICAL PHYSICS
  • 2013-03-27. irregular states and isolated superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-02-03. On D = 5 super Yang-Mills theory and (2, 0) theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-11-24. On S-duality of 5d super Yang-Mills on S1 in JOURNAL OF HIGH ENERGY PHYSICS
  • 1984-03. Representations of conformal supersymmetry in LETTERS IN MATHEMATICAL PHYSICS
  • 2009-09-18. New Seiberg dualities from 𝒩 = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2014)142

    DOI

    http://dx.doi.org/10.1007/jhep01(2014)142

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051863349


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yonekura", 
            "givenName": "Kazuya", 
            "id": "sg:person.07506765427.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2014)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027602010", 
              "https://doi.org/10.1007/jhep01(2014)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010897089", 
              "https://doi.org/10.1007/jhep10(2012)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2011)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053192111", 
              "https://doi.org/10.1007/jhep12(2011)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006724426", 
              "https://doi.org/10.1007/jhep07(2013)021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532912", 
              "https://doi.org/10.1007/jhep07(2013)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2011)123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046523163", 
              "https://doi.org/10.1007/jhep11(2011)123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010569175", 
              "https://doi.org/10.1007/jhep06(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036496982", 
              "https://doi.org/10.1007/jhep08(2012)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032453331", 
              "https://doi.org/10.1007/jhep01(2010)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001669470", 
              "https://doi.org/10.1007/jhep06(2012)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0938-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037774778", 
              "https://doi.org/10.1007/s00220-009-0938-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2013)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032130090", 
              "https://doi.org/10.1007/jhep12(2013)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030601133", 
              "https://doi.org/10.1007/jhep05(2013)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2011)025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007483572", 
              "https://doi.org/10.1007/jhep07(2011)025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037470008", 
              "https://doi.org/10.1007/jhep02(2011)011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044751378", 
              "https://doi.org/10.1007/jhep07(2013)072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052766039", 
              "https://doi.org/10.1007/bf01214418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048187336", 
              "https://doi.org/10.1007/jhep02(2011)069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018116770", 
              "https://doi.org/10.1088/1126-6708/2009/09/086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040084294", 
              "https://doi.org/10.1007/jhep07(2013)149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044602053", 
              "https://doi.org/10.1007/jhep10(2012)184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044208279", 
              "https://doi.org/10.1007/jhep08(2013)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026901583", 
              "https://doi.org/10.1007/jhep10(2013)227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026965803", 
              "https://doi.org/10.1007/jhep10(2013)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-009-9687-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023816735", 
              "https://doi.org/10.1007/s10955-009-9687-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01223371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002704291", 
              "https://doi.org/10.1007/bf01223371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2012)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001081567", 
              "https://doi.org/10.1007/jhep02(2012)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-013-0239-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023470920", 
              "https://doi.org/10.1007/s00023-013-0239-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2013)147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011112959", 
              "https://doi.org/10.1007/jhep03(2013)147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034485925", 
              "https://doi.org/10.1007/jhep08(2013)017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005878973", 
              "https://doi.org/10.1007/jhep05(2012)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2011)083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050303342", 
              "https://doi.org/10.1007/jhep01(2011)083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036285701", 
              "https://doi.org/10.1007/jhep01(2013)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033330104", 
              "https://doi.org/10.1007/jhep08(2013)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00406399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049718060", 
              "https://doi.org/10.1007/bf00406399"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01-24", 
        "datePublishedReg": "2014-01-24", 
        "description": "Twisted compactification of the 6d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document}\u2009=\u2009(2, 0) theories on a punctured Riemann surface give a large class of 4d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document}\u2009=\u20091 and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document}\u2009=\u20092 gauge theories, called class \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{S} $\\end{document}. We argue that nonperturbative dynamics of class \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{S} $\\end{document} theories are described by 5d maximal Super-Yang-Mills (SYM) twisted on the Riemann surface. In a sense, twisted 5d SYM might be regarded as a \u201cLagrangian\u201d for class \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{S} $\\end{document} theories on \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ {{\\mathbb{R}}^{1,2 }}\\times {S^1} $\\end{document}. First, we show that twisted 5d SYM gives generalized Hitchin\u2019s equations which was proposed recently. Then, we discuss how to identify chiral operators with quantities in twisted 5d SYM. Mesons, or holomorphic moment maps, are identified with operators at punctures which are realized as 3d superconformal theories T\u03c1[G] coupled to twisted 5d SYM. \u201cBaryons\u201d are identified qualitatively through a study of 4d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document}\u2009=\u20092 Higgs branches. We also derive a simple formula for dynamical superpotential vev which is relevant for BPS domain wall tensions. With these tools, we examine many examples of 4d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document}\u2009=\u20091 theories with several phases such as confining, Higgs, and Coulomb phases, and show perfect agreements between field theories and twisted 5d SYM. Spectral curve is an essential tool to solve generalized Hitchin\u2019s equations, and our results clarify the physical information encoded in the curve.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep01(2014)142", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "keywords": [
          "Riemann surface", 
          "Hitchin equations", 
          "gauge theory", 
          "super-Yang", 
          "punctured Riemann surface", 
          "supersymmetric gauge theories", 
          "superconformal theories", 
          "field theory", 
          "twisted compactifications", 
          "nonperturbative dynamics", 
          "chiral operators", 
          "moment map", 
          "Higgs branch", 
          "Coulomb phase", 
          "large class", 
          "equations", 
          "SYM", 
          "simple formula", 
          "domain wall tension", 
          "physical information", 
          "theory", 
          "spectral curves", 
          "operators", 
          "class", 
          "baryons", 
          "perfect agreement", 
          "compactification", 
          "Lagrangian", 
          "mesons", 
          "Higgs", 
          "VEV", 
          "essential tool", 
          "surface", 
          "formula", 
          "confining", 
          "dynamics", 
          "phase", 
          "agreement", 
          "curves", 
          "quantity", 
          "tool", 
          "sense", 
          "maps", 
          "branches", 
          "results", 
          "mill", 
          "information", 
          "example", 
          "wall tension", 
          "tension", 
          "study", 
          "puncture"
        ], 
        "name": "Supersymmetric gauge theory, (2,0) theory and twisted 5d Super-Yang-Mills", 
        "pagination": "142", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051863349"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2014)142"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2014)142", 
          "https://app.dimensions.ai/details/publication/pub.1051863349"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_627.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep01(2014)142"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)142'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)142'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)142'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)142'


     

    This table displays all metadata directly associated to this object as RDF triples.

    265 TRIPLES      21 PREDICATES      115 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2014)142 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nae659b5a207a48c083798514e65f3204
    4 schema:citation sg:pub.10.1007/bf00406399
    5 sg:pub.10.1007/bf01214418
    6 sg:pub.10.1007/bf01223371
    7 sg:pub.10.1007/jhep01(2010)088
    8 sg:pub.10.1007/jhep01(2011)083
    9 sg:pub.10.1007/jhep01(2013)100
    10 sg:pub.10.1007/jhep01(2014)001
    11 sg:pub.10.1007/jhep02(2011)011
    12 sg:pub.10.1007/jhep02(2011)069
    13 sg:pub.10.1007/jhep02(2012)031
    14 sg:pub.10.1007/jhep03(2013)147
    15 sg:pub.10.1007/jhep05(2012)125
    16 sg:pub.10.1007/jhep05(2013)144
    17 sg:pub.10.1007/jhep06(2012)005
    18 sg:pub.10.1007/jhep06(2013)056
    19 sg:pub.10.1007/jhep07(2011)025
    20 sg:pub.10.1007/jhep07(2013)021
    21 sg:pub.10.1007/jhep07(2013)072
    22 sg:pub.10.1007/jhep07(2013)107
    23 sg:pub.10.1007/jhep07(2013)149
    24 sg:pub.10.1007/jhep08(2012)034
    25 sg:pub.10.1007/jhep08(2012)157
    26 sg:pub.10.1007/jhep08(2013)017
    27 sg:pub.10.1007/jhep08(2013)099
    28 sg:pub.10.1007/jhep08(2013)137
    29 sg:pub.10.1007/jhep09(2010)063
    30 sg:pub.10.1007/jhep10(2012)184
    31 sg:pub.10.1007/jhep10(2012)189
    32 sg:pub.10.1007/jhep10(2013)010
    33 sg:pub.10.1007/jhep10(2013)227
    34 sg:pub.10.1007/jhep11(2011)123
    35 sg:pub.10.1007/jhep12(2011)031
    36 sg:pub.10.1007/jhep12(2013)035
    37 sg:pub.10.1007/s00023-013-0239-7
    38 sg:pub.10.1007/s00220-009-0938-6
    39 sg:pub.10.1007/s10955-009-9687-3
    40 sg:pub.10.1088/1126-6708/2007/12/088
    41 sg:pub.10.1088/1126-6708/2009/09/052
    42 sg:pub.10.1088/1126-6708/2009/09/086
    43 schema:datePublished 2014-01-24
    44 schema:datePublishedReg 2014-01-24
    45 schema:description Twisted compactification of the 6d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = (2, 0) theories on a punctured Riemann surface give a large class of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 gauge theories, called class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document}. We argue that nonperturbative dynamics of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories are described by 5d maximal Super-Yang-Mills (SYM) twisted on the Riemann surface. In a sense, twisted 5d SYM might be regarded as a “Lagrangian” for class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^{1,2 }}\times {S^1} $\end{document}. First, we show that twisted 5d SYM gives generalized Hitchin’s equations which was proposed recently. Then, we discuss how to identify chiral operators with quantities in twisted 5d SYM. Mesons, or holomorphic moment maps, are identified with operators at punctures which are realized as 3d superconformal theories Tρ[G] coupled to twisted 5d SYM. “Baryons” are identified qualitatively through a study of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 Higgs branches. We also derive a simple formula for dynamical superpotential vev which is relevant for BPS domain wall tensions. With these tools, we examine many examples of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 theories with several phases such as confining, Higgs, and Coulomb phases, and show perfect agreements between field theories and twisted 5d SYM. Spectral curve is an essential tool to solve generalized Hitchin’s equations, and our results clarify the physical information encoded in the curve.
    46 schema:genre article
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N5cb0bd467fb54e2dbcc477413b80c2ff
    49 Na618094461ba49a8aecd51d179790729
    50 sg:journal.1052482
    51 schema:keywords Coulomb phase
    52 Higgs
    53 Higgs branch
    54 Hitchin equations
    55 Lagrangian
    56 Riemann surface
    57 SYM
    58 VEV
    59 agreement
    60 baryons
    61 branches
    62 chiral operators
    63 class
    64 compactification
    65 confining
    66 curves
    67 domain wall tension
    68 dynamics
    69 equations
    70 essential tool
    71 example
    72 field theory
    73 formula
    74 gauge theory
    75 information
    76 large class
    77 maps
    78 mesons
    79 mill
    80 moment map
    81 nonperturbative dynamics
    82 operators
    83 perfect agreement
    84 phase
    85 physical information
    86 puncture
    87 punctured Riemann surface
    88 quantity
    89 results
    90 sense
    91 simple formula
    92 spectral curves
    93 study
    94 super-Yang
    95 superconformal theories
    96 supersymmetric gauge theories
    97 surface
    98 tension
    99 theory
    100 tool
    101 twisted compactifications
    102 wall tension
    103 schema:name Supersymmetric gauge theory, (2,0) theory and twisted 5d Super-Yang-Mills
    104 schema:pagination 142
    105 schema:productId N00c81c6341bf4f2faed2f93ebdcda4db
    106 Ne2c7646adc29486886019f02ce04843a
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863349
    108 https://doi.org/10.1007/jhep01(2014)142
    109 schema:sdDatePublished 2022-08-04T17:02
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher Nd88564f590b74590886a9202507e6338
    112 schema:url https://doi.org/10.1007/jhep01(2014)142
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N00c81c6341bf4f2faed2f93ebdcda4db schema:name dimensions_id
    117 schema:value pub.1051863349
    118 rdf:type schema:PropertyValue
    119 N5cb0bd467fb54e2dbcc477413b80c2ff schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 Na618094461ba49a8aecd51d179790729 schema:volumeNumber 2014
    122 rdf:type schema:PublicationVolume
    123 Nae659b5a207a48c083798514e65f3204 rdf:first sg:person.07506765427.69
    124 rdf:rest rdf:nil
    125 Nd88564f590b74590886a9202507e6338 schema:name Springer Nature - SN SciGraph project
    126 rdf:type schema:Organization
    127 Ne2c7646adc29486886019f02ce04843a schema:name doi
    128 schema:value 10.1007/jhep01(2014)142
    129 rdf:type schema:PropertyValue
    130 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Mathematical Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Pure Mathematics
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1052482 schema:issn 1029-8479
    137 1126-6708
    138 schema:name Journal of High Energy Physics
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.07506765427.69 schema:affiliation grid-institutes:grid.78989.37
    142 schema:familyName Yonekura
    143 schema:givenName Kazuya
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69
    145 rdf:type schema:Person
    146 sg:pub.10.1007/bf00406399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049718060
    147 https://doi.org/10.1007/bf00406399
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf01214418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052766039
    150 https://doi.org/10.1007/bf01214418
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf01223371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002704291
    153 https://doi.org/10.1007/bf01223371
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
    156 https://doi.org/10.1007/jhep01(2010)088
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep01(2011)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050303342
    159 https://doi.org/10.1007/jhep01(2011)083
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
    162 https://doi.org/10.1007/jhep01(2013)100
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep01(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602010
    165 https://doi.org/10.1007/jhep01(2014)001
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep02(2011)011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037470008
    168 https://doi.org/10.1007/jhep02(2011)011
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep02(2011)069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187336
    171 https://doi.org/10.1007/jhep02(2011)069
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep02(2012)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001081567
    174 https://doi.org/10.1007/jhep02(2012)031
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep03(2013)147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011112959
    177 https://doi.org/10.1007/jhep03(2013)147
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep05(2012)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005878973
    180 https://doi.org/10.1007/jhep05(2012)125
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep05(2013)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030601133
    183 https://doi.org/10.1007/jhep05(2013)144
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/jhep06(2012)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001669470
    186 https://doi.org/10.1007/jhep06(2012)005
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/jhep06(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010569175
    189 https://doi.org/10.1007/jhep06(2013)056
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/jhep07(2011)025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007483572
    192 https://doi.org/10.1007/jhep07(2011)025
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/jhep07(2013)021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006724426
    195 https://doi.org/10.1007/jhep07(2013)021
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/jhep07(2013)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044751378
    198 https://doi.org/10.1007/jhep07(2013)072
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/jhep07(2013)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532912
    201 https://doi.org/10.1007/jhep07(2013)107
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/jhep07(2013)149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084294
    204 https://doi.org/10.1007/jhep07(2013)149
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    207 https://doi.org/10.1007/jhep08(2012)034
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/jhep08(2012)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036496982
    210 https://doi.org/10.1007/jhep08(2012)157
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/jhep08(2013)017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034485925
    213 https://doi.org/10.1007/jhep08(2013)017
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/jhep08(2013)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033330104
    216 https://doi.org/10.1007/jhep08(2013)099
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/jhep08(2013)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044208279
    219 https://doi.org/10.1007/jhep08(2013)137
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    222 https://doi.org/10.1007/jhep09(2010)063
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/jhep10(2012)184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044602053
    225 https://doi.org/10.1007/jhep10(2012)184
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/jhep10(2012)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010897089
    228 https://doi.org/10.1007/jhep10(2012)189
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/jhep10(2013)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965803
    231 https://doi.org/10.1007/jhep10(2013)010
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/jhep10(2013)227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026901583
    234 https://doi.org/10.1007/jhep10(2013)227
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/jhep11(2011)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523163
    237 https://doi.org/10.1007/jhep11(2011)123
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/jhep12(2011)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053192111
    240 https://doi.org/10.1007/jhep12(2011)031
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/jhep12(2013)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032130090
    243 https://doi.org/10.1007/jhep12(2013)035
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00023-013-0239-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023470920
    246 https://doi.org/10.1007/s00023-013-0239-7
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s00220-009-0938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774778
    249 https://doi.org/10.1007/s00220-009-0938-6
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s10955-009-9687-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023816735
    252 https://doi.org/10.1007/s10955-009-9687-3
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    255 https://doi.org/10.1088/1126-6708/2007/12/088
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    258 https://doi.org/10.1088/1126-6708/2009/09/052
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1088/1126-6708/2009/09/086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018116770
    261 https://doi.org/10.1088/1126-6708/2009/09/086
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A
    264 schema:name School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, 08540, Princeton, NJ, U.S.A
    265 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...