Holographic entanglement entropy for general higher derivative gravity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-10

AUTHORS

Xi Dong

ABSTRACT

We propose a general formula for calculating the entanglement entropy in theories dual to higher derivative gravity where the Lagrangian is a contraction of Riemann tensors. Our formula consists of Wald’s formula for the black hole entropy, as well as corrections involving the extrinsic curvature. We derive these corrections by noting that they arise from naively higher order contributions to the action which are enhanced due to would-be logarithmic divergences. Our formula reproduces the Jacobson-Myers entropy in the context of Lovelock gravity, and agrees with existing results for general four-derivative gravity.We emphasize that the formula should be evaluated on a particular bulk surface whose location can in principle be determined by solving the equations of motion with conical boundary conditions. This may be difficult in practice, and an alternative method is desirable. A natural prescription is simply minimizing our formula, analogous to the Ryu-Takayanagi prescription for Einstein gravity. We show that this is correct in several examples including Lovelock and general four-derivative gravity. More... »

PAGES

44

References to SciGraph publications

  • 2013-11-08. Quantum corrections to holographic entanglement entropy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-07-26. Holographic entanglement entropy in Lovelock gravities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-02. Entanglement entropy in higher derivative holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 1970-02. Divergence-free tensorial concomitants in AEQUATIONES MATHEMATICAE
  • 2006-09-08. Proof of the holographic formula for entanglement entropy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-09. Towards a derivation of holographic entanglement entropy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-19. Building up spacetime with quantum entanglement in GENERAL RELATIVITY AND GRAVITATION
  • 2013-09-23. Holographic entanglement beyond classical gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 1975-08. Particle creation by black holes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-12-03. Exact and numerical results on entanglement entropy in (5 + 1)-dimensional CFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-31. Note on generalized gravitational entropy in Lovelock gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06-05. On spacetime entanglement in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-30. The entropy of a hole in spacetime in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-19. Generalized gravitational entropy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-07-23. A covariant holographic entanglement entropy proposal in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-04-06. On holographic entanglement entropy and higher curvature gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 1973-06. The four laws of black hole mechanics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2014)044

    DOI

    http://dx.doi.org/10.1007/jhep01(2014)044

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023739307


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, 94305, Stanford, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, 94305, Stanford, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dong", 
            "givenName": "Xi", 
            "id": "sg:person.013475746527.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475746527.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep06(2013)013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001720376", 
              "https://doi.org/10.1007/jhep06(2013)013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701796", 
              "https://doi.org/10.1007/bf02345020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028852094", 
              "https://doi.org/10.1007/jhep08(2013)090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2011)025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003899844", 
              "https://doi.org/10.1007/jhep04(2011)025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01645742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038501185", 
              "https://doi.org/10.1007/bf01645742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2011)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026554332", 
              "https://doi.org/10.1007/jhep07(2011)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01817753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025518762", 
              "https://doi.org/10.1007/bf01817753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2013)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031327005", 
              "https://doi.org/10.1007/jhep09(2013)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/07/062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015808787", 
              "https://doi.org/10.1088/1126-6708/2007/07/062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/09/018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015553968", 
              "https://doi.org/10.1088/1126-6708/2006/09/018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018643098", 
              "https://doi.org/10.1007/jhep08(2013)012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2013)074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021871837", 
              "https://doi.org/10.1007/jhep11(2013)074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035557156", 
              "https://doi.org/10.1007/jhep05(2011)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028635552", 
              "https://doi.org/10.1007/jhep10(2013)220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016997182", 
              "https://doi.org/10.1007/jhep07(2013)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2012)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021989719", 
              "https://doi.org/10.1007/jhep12(2012)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-010-1034-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036372245", 
              "https://doi.org/10.1007/s10714-010-1034-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01-10", 
        "datePublishedReg": "2014-01-10", 
        "description": "We propose a general formula for calculating the entanglement entropy in theories dual to higher derivative gravity where the Lagrangian is a contraction of Riemann tensors. Our formula consists of Wald\u2019s formula for the black hole entropy, as well as corrections involving the extrinsic curvature. We derive these corrections by noting that they arise from naively higher order contributions to the action which are enhanced due to would-be logarithmic divergences. Our formula reproduces the Jacobson-Myers entropy in the context of Lovelock gravity, and agrees with existing results for general four-derivative gravity.We emphasize that the formula should be evaluated on a particular bulk surface whose location can in principle be determined by solving the equations of motion with conical boundary conditions. This may be difficult in practice, and an alternative method is desirable. A natural prescription is simply minimizing our formula, analogous to the Ryu-Takayanagi prescription for Einstein gravity. We show that this is correct in several examples including Lovelock and general four-derivative gravity.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep01(2014)044", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "keywords": [
          "higher derivative gravity", 
          "four-derivative gravity", 
          "derivative gravity", 
          "entanglement entropy", 
          "general higher derivative gravity", 
          "Ryu-Takayanagi prescription", 
          "equations of motion", 
          "holographic entanglement entropy", 
          "Jacobson-Myers", 
          "Riemann tensor", 
          "Lovelock gravity", 
          "Einstein gravity", 
          "higher-order contributions", 
          "extrinsic curvature", 
          "logarithmic divergence", 
          "Wald\u2019s formula", 
          "black holes", 
          "natural prescription", 
          "boundary conditions", 
          "order contributions", 
          "conical boundary conditions", 
          "gravity", 
          "formula", 
          "entropy", 
          "general formula", 
          "Lagrangian", 
          "bulk surface", 
          "equations", 
          "tensor", 
          "motion", 
          "theory", 
          "alternative method", 
          "Lovelock", 
          "curvature", 
          "correction", 
          "holes", 
          "principles", 
          "divergence", 
          "conditions", 
          "results", 
          "contribution", 
          "surface", 
          "location", 
          "prescription", 
          "context", 
          "action", 
          "contraction", 
          "practice", 
          "method", 
          "example"
        ], 
        "name": "Holographic entanglement entropy for general higher derivative gravity", 
        "pagination": "44", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023739307"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2014)044"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2014)044", 
          "https://app.dimensions.ai/details/publication/pub.1023739307"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_634.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep01(2014)044"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)044'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)044'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)044'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)044'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      92 URIs      67 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2014)044 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N2c3d757b477c4a7fa999067a70e53c92
    4 schema:citation sg:pub.10.1007/bf01645742
    5 sg:pub.10.1007/bf01817753
    6 sg:pub.10.1007/bf02345020
    7 sg:pub.10.1007/jhep04(2011)025
    8 sg:pub.10.1007/jhep05(2011)036
    9 sg:pub.10.1007/jhep06(2013)013
    10 sg:pub.10.1007/jhep07(2011)109
    11 sg:pub.10.1007/jhep07(2013)185
    12 sg:pub.10.1007/jhep08(2013)012
    13 sg:pub.10.1007/jhep08(2013)090
    14 sg:pub.10.1007/jhep09(2013)109
    15 sg:pub.10.1007/jhep10(2013)220
    16 sg:pub.10.1007/jhep11(2013)074
    17 sg:pub.10.1007/jhep12(2012)005
    18 sg:pub.10.1007/s10714-010-1034-0
    19 sg:pub.10.1088/1126-6708/2006/09/018
    20 sg:pub.10.1088/1126-6708/2007/07/062
    21 schema:datePublished 2014-01-10
    22 schema:datePublishedReg 2014-01-10
    23 schema:description We propose a general formula for calculating the entanglement entropy in theories dual to higher derivative gravity where the Lagrangian is a contraction of Riemann tensors. Our formula consists of Wald’s formula for the black hole entropy, as well as corrections involving the extrinsic curvature. We derive these corrections by noting that they arise from naively higher order contributions to the action which are enhanced due to would-be logarithmic divergences. Our formula reproduces the Jacobson-Myers entropy in the context of Lovelock gravity, and agrees with existing results for general four-derivative gravity.We emphasize that the formula should be evaluated on a particular bulk surface whose location can in principle be determined by solving the equations of motion with conical boundary conditions. This may be difficult in practice, and an alternative method is desirable. A natural prescription is simply minimizing our formula, analogous to the Ryu-Takayanagi prescription for Einstein gravity. We show that this is correct in several examples including Lovelock and general four-derivative gravity.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N1fa89b6720584c3998696b7142fc874e
    28 Nb2956a6bd5b74a9fa7f08a4fd8406810
    29 sg:journal.1052482
    30 schema:keywords Einstein gravity
    31 Jacobson-Myers
    32 Lagrangian
    33 Lovelock
    34 Lovelock gravity
    35 Riemann tensor
    36 Ryu-Takayanagi prescription
    37 Wald’s formula
    38 action
    39 alternative method
    40 black holes
    41 boundary conditions
    42 bulk surface
    43 conditions
    44 conical boundary conditions
    45 context
    46 contraction
    47 contribution
    48 correction
    49 curvature
    50 derivative gravity
    51 divergence
    52 entanglement entropy
    53 entropy
    54 equations
    55 equations of motion
    56 example
    57 extrinsic curvature
    58 formula
    59 four-derivative gravity
    60 general formula
    61 general higher derivative gravity
    62 gravity
    63 higher derivative gravity
    64 higher-order contributions
    65 holes
    66 holographic entanglement entropy
    67 location
    68 logarithmic divergence
    69 method
    70 motion
    71 natural prescription
    72 order contributions
    73 practice
    74 prescription
    75 principles
    76 results
    77 surface
    78 tensor
    79 theory
    80 schema:name Holographic entanglement entropy for general higher derivative gravity
    81 schema:pagination 44
    82 schema:productId N6e64030c327643d1bc4a79a90b4ce731
    83 Nbbee38540f9f44c2b02594d3e9e55b85
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023739307
    85 https://doi.org/10.1007/jhep01(2014)044
    86 schema:sdDatePublished 2022-05-20T07:29
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher N9e7bc01dd5c54b6baa1dc4f7f8fa7aec
    89 schema:url https://doi.org/10.1007/jhep01(2014)044
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N1fa89b6720584c3998696b7142fc874e schema:issueNumber 1
    94 rdf:type schema:PublicationIssue
    95 N2c3d757b477c4a7fa999067a70e53c92 rdf:first sg:person.013475746527.11
    96 rdf:rest rdf:nil
    97 N6e64030c327643d1bc4a79a90b4ce731 schema:name dimensions_id
    98 schema:value pub.1023739307
    99 rdf:type schema:PropertyValue
    100 N9e7bc01dd5c54b6baa1dc4f7f8fa7aec schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 Nb2956a6bd5b74a9fa7f08a4fd8406810 schema:volumeNumber 2014
    103 rdf:type schema:PublicationVolume
    104 Nbbee38540f9f44c2b02594d3e9e55b85 schema:name doi
    105 schema:value 10.1007/jhep01(2014)044
    106 rdf:type schema:PropertyValue
    107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Mathematical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Numerical and Computational Mathematics
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1052482 schema:issn 1029-8479
    114 1126-6708
    115 schema:name Journal of High Energy Physics
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.013475746527.11 schema:affiliation grid-institutes:grid.168010.e
    119 schema:familyName Dong
    120 schema:givenName Xi
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475746527.11
    122 rdf:type schema:Person
    123 sg:pub.10.1007/bf01645742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038501185
    124 https://doi.org/10.1007/bf01645742
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01817753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025518762
    127 https://doi.org/10.1007/bf01817753
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
    130 https://doi.org/10.1007/bf02345020
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep04(2011)025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003899844
    133 https://doi.org/10.1007/jhep04(2011)025
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep05(2011)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035557156
    136 https://doi.org/10.1007/jhep05(2011)036
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep06(2013)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001720376
    139 https://doi.org/10.1007/jhep06(2013)013
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep07(2011)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026554332
    142 https://doi.org/10.1007/jhep07(2011)109
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep07(2013)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016997182
    145 https://doi.org/10.1007/jhep07(2013)185
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep08(2013)012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018643098
    148 https://doi.org/10.1007/jhep08(2013)012
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep08(2013)090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028852094
    151 https://doi.org/10.1007/jhep08(2013)090
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep09(2013)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031327005
    154 https://doi.org/10.1007/jhep09(2013)109
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep10(2013)220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635552
    157 https://doi.org/10.1007/jhep10(2013)220
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep11(2013)074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021871837
    160 https://doi.org/10.1007/jhep11(2013)074
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep12(2012)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021989719
    163 https://doi.org/10.1007/jhep12(2012)005
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10714-010-1034-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036372245
    166 https://doi.org/10.1007/s10714-010-1034-0
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1088/1126-6708/2006/09/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015553968
    169 https://doi.org/10.1088/1126-6708/2006/09/018
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1088/1126-6708/2007/07/062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015808787
    172 https://doi.org/10.1088/1126-6708/2007/07/062
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.168010.e schema:alternateName Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, 94305, Stanford, CA, U.S.A.
    175 schema:name Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, 94305, Stanford, CA, U.S.A.
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...