Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01

AUTHORS

Stefano Cremonesi, Amihay Hanany, Alberto Zaffaroni

ABSTRACT

This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep01(2014)005

DOI

http://dx.doi.org/10.1007/jhep01(2014)005

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004476555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cremonesi", 
        "givenName": "Stefano", 
        "id": "sg:person.012634721705.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012634721705.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Milano Bicocca", 
          "id": "https://www.grid.ac/institutes/grid.470207.6", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Milano-Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy", 
            "INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaffaroni", 
        "givenName": "Alberto", 
        "id": "sg:person.010467526737.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467526737.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)80030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000672730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1999/04/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001667186", 
          "https://doi.org/10.1088/1126-6708/1999/04/021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2004/03/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010577780", 
          "https://doi.org/10.1088/1126-6708/2004/03/008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/07/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011578820", 
          "https://doi.org/10.1088/1126-6708/2000/07/019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013703167", 
          "https://doi.org/10.1088/1126-6708/2007/11/050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00115-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014305438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016537713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016537713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00125-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022723015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024992501", 
          "https://doi.org/10.1088/1126-6708/2000/11/033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415964", 
          "https://doi.org/10.1088/1126-6708/2002/12/044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/06/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026086430", 
          "https://doi.org/10.1088/1126-6708/2000/06/013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2013)189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027167895", 
          "https://doi.org/10.1007/jhep11(2013)189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030228754", 
          "https://doi.org/10.1088/1126-6708/2002/11/049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00454-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034174898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695386", 
          "https://doi.org/10.1007/jhep01(2010)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695386", 
          "https://doi.org/10.1007/jhep01(2010)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/04/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042895827", 
          "https://doi.org/10.1088/1126-6708/1998/04/005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00061-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043251908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2012)079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043468416", 
          "https://doi.org/10.1007/jhep01(2012)079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.74.025005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.74.025005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045736403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2011)015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046870432", 
          "https://doi.org/10.1007/jhep05(2011)015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/07/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049485579", 
          "https://doi.org/10.1088/1126-6708/2000/07/001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(96)01088-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049623391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214443066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459712"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01", 
    "datePublishedReg": "2014-01-01", 
    "description": "This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$ \\mathcal{N} $\\end{document} = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$ \\mathcal{N} $\\end{document} = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep01(2014)005", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2773222", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2755951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3861842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2014"
      }
    ], 
    "name": "Monopole operators and Hilbert series of Coulomb branches of 3d\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$ \\mathcal{N} $\\end{document} = 4 gauge theories", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15549caab8b57d318ebe2fa62804b1f76f8e0ec77af6a384ba3200a6ab96ba34"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep01(2014)005"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004476555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep01(2014)005", 
      "https://app.dimensions.ai/details/publication/pub.1004476555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/JHEP01(2014)005"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)005'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)005'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)005'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2014)005'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep01(2014)005 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfd8d3d2349eb44b2aba5f0e864fcbe4b
4 schema:citation sg:pub.10.1007/jhep01(2010)110
5 sg:pub.10.1007/jhep01(2012)079
6 sg:pub.10.1007/jhep05(2011)015
7 sg:pub.10.1007/jhep06(2010)100
8 sg:pub.10.1007/jhep11(2013)189
9 sg:pub.10.1088/1126-6708/1998/04/005
10 sg:pub.10.1088/1126-6708/1999/04/021
11 sg:pub.10.1088/1126-6708/2000/06/013
12 sg:pub.10.1088/1126-6708/2000/07/001
13 sg:pub.10.1088/1126-6708/2000/07/019
14 sg:pub.10.1088/1126-6708/2000/11/033
15 sg:pub.10.1088/1126-6708/2002/11/049
16 sg:pub.10.1088/1126-6708/2002/12/044
17 sg:pub.10.1088/1126-6708/2004/03/008
18 sg:pub.10.1088/1126-6708/2007/11/050
19 https://doi.org/10.1016/0370-2693(96)01088-x
20 https://doi.org/10.1016/0550-3213(77)90221-8
21 https://doi.org/10.1016/0550-3213(78)90153-0
22 https://doi.org/10.1016/s0550-3213(97)00061-8
23 https://doi.org/10.1016/s0550-3213(97)00115-6
24 https://doi.org/10.1016/s0550-3213(97)00125-9
25 https://doi.org/10.1016/s0550-3213(97)00454-9
26 https://doi.org/10.1016/s0550-3213(97)80030-2
27 https://doi.org/10.1103/physrevd.14.2728
28 https://doi.org/10.1103/physrevd.74.025005
29 https://doi.org/10.4310/atmp.2009.v13.n3.a5
30 https://doi.org/10.4310/jdg/1214443066
31 schema:datePublished 2014-01
32 schema:datePublishedReg 2014-01-01
33 schema:description This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N41e41030386440e48985b75ec905ee65
38 Nf67c6c35054a4cc1906958d98b0a10f9
39 sg:journal.1052482
40 schema:name Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories
41 schema:pagination 5
42 schema:productId N8b6277b6d7564fd0b55cdb16b69a9833
43 Nc8710d79c87a4072b32ce94c340657eb
44 Nd1f6fed3e8d34eb69dfc87d79c1e055f
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
46 https://doi.org/10.1007/jhep01(2014)005
47 schema:sdDatePublished 2019-04-10T19:02
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N5f28327da06946919bac6e6a8e5cdb03
50 schema:url http://link.springer.com/10.1007/JHEP01(2014)005
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N41e41030386440e48985b75ec905ee65 schema:volumeNumber 2014
55 rdf:type schema:PublicationVolume
56 N5f28327da06946919bac6e6a8e5cdb03 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N8b6277b6d7564fd0b55cdb16b69a9833 schema:name dimensions_id
59 schema:value pub.1004476555
60 rdf:type schema:PropertyValue
61 N928086b650b24da996d8c7d595c9b0d0 rdf:first sg:person.010467526737.44
62 rdf:rest rdf:nil
63 Nb5fab227ef1343e0aa75cc3581a9cc89 rdf:first sg:person.012155553275.80
64 rdf:rest N928086b650b24da996d8c7d595c9b0d0
65 Nc8710d79c87a4072b32ce94c340657eb schema:name readcube_id
66 schema:value 15549caab8b57d318ebe2fa62804b1f76f8e0ec77af6a384ba3200a6ab96ba34
67 rdf:type schema:PropertyValue
68 Nd1f6fed3e8d34eb69dfc87d79c1e055f schema:name doi
69 schema:value 10.1007/jhep01(2014)005
70 rdf:type schema:PropertyValue
71 Nf67c6c35054a4cc1906958d98b0a10f9 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 Nfd8d3d2349eb44b2aba5f0e864fcbe4b rdf:first sg:person.012634721705.50
74 rdf:rest Nb5fab227ef1343e0aa75cc3581a9cc89
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2014)005
82 rdf:type schema:MonetaryGrant
83 sg:grant.2773222 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2014)005
84 rdf:type schema:MonetaryGrant
85 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2014)005
86 rdf:type schema:MonetaryGrant
87 sg:journal.1052482 schema:issn 1029-8479
88 1126-6708
89 schema:name Journal of High Energy Physics
90 rdf:type schema:Periodical
91 sg:person.010467526737.44 schema:affiliation https://www.grid.ac/institutes/grid.470207.6
92 schema:familyName Zaffaroni
93 schema:givenName Alberto
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467526737.44
95 rdf:type schema:Person
96 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
97 schema:familyName Hanany
98 schema:givenName Amihay
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
100 rdf:type schema:Person
101 sg:person.012634721705.50 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
102 schema:familyName Cremonesi
103 schema:givenName Stefano
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012634721705.50
105 rdf:type schema:Person
106 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
107 https://doi.org/10.1007/jhep01(2010)110
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/jhep01(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
110 https://doi.org/10.1007/jhep01(2012)079
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
113 https://doi.org/10.1007/jhep05(2011)015
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
116 https://doi.org/10.1007/jhep06(2010)100
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/jhep11(2013)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027167895
119 https://doi.org/10.1007/jhep11(2013)189
120 rdf:type schema:CreativeWork
121 sg:pub.10.1088/1126-6708/1998/04/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042895827
122 https://doi.org/10.1088/1126-6708/1998/04/005
123 rdf:type schema:CreativeWork
124 sg:pub.10.1088/1126-6708/1999/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667186
125 https://doi.org/10.1088/1126-6708/1999/04/021
126 rdf:type schema:CreativeWork
127 sg:pub.10.1088/1126-6708/2000/06/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026086430
128 https://doi.org/10.1088/1126-6708/2000/06/013
129 rdf:type schema:CreativeWork
130 sg:pub.10.1088/1126-6708/2000/07/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049485579
131 https://doi.org/10.1088/1126-6708/2000/07/001
132 rdf:type schema:CreativeWork
133 sg:pub.10.1088/1126-6708/2000/07/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011578820
134 https://doi.org/10.1088/1126-6708/2000/07/019
135 rdf:type schema:CreativeWork
136 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
137 https://doi.org/10.1088/1126-6708/2000/11/033
138 rdf:type schema:CreativeWork
139 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
140 https://doi.org/10.1088/1126-6708/2002/11/049
141 rdf:type schema:CreativeWork
142 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
143 https://doi.org/10.1088/1126-6708/2002/12/044
144 rdf:type schema:CreativeWork
145 sg:pub.10.1088/1126-6708/2004/03/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010577780
146 https://doi.org/10.1088/1126-6708/2004/03/008
147 rdf:type schema:CreativeWork
148 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
149 https://doi.org/10.1088/1126-6708/2007/11/050
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0370-2693(96)01088-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049623391
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0550-3213(77)90221-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020399525
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0550-3213(78)90153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016537713
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0550-3213(97)00061-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043251908
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0550-3213(97)00115-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014305438
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0550-3213(97)00125-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022723015
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0550-3213(97)00454-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034174898
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0550-3213(97)80030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672730
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevd.14.2728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684345
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevd.74.025005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045736403
170 rdf:type schema:CreativeWork
171 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
172 rdf:type schema:CreativeWork
173 https://doi.org/10.4310/jdg/1214443066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459712
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.470207.6 schema:alternateName INFN Sezione di Milano Bicocca
176 schema:name Dipartimento di Fisica, Università di Milano-Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy
177 INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126, Milano, Italy
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
180 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...