gauge theories on toric singularities, blow-up formulae and W-algebrae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-01-02

AUTHORS

Giulio Bonelli, Kazunobu Maruyoshi, Alessandro Tanzini, Futoshi Yagi

ABSTRACT

We compute the Nekrasov partition function of gauge theories on the (resolved) toric singularities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{{\mathbb{C}}^2}}} \left/ {\varGamma } \right.} $\end{document} in terms of blow-up formulae. We discuss the expansion of the partition function in the ϵ1, ϵ2 → 0 limit along with its modular properties and how to derive them from the M-theory perspective. On the two-dimensional conformal field theory side, our results can be interpreted in terms of representations of the direct sum of Heisenberg plus WN-algebrae with suitable central charges, which can be computed from the fan of the resolved toric variety. We provide a check of this correspondence by computing the central charge of the two-dimensional theory from the anomaly polynomial of M5-brane theory. Upon using the AGT correspondence our results provide a candidate for the conformal blocks and three-point functions of a class of the two-dimensional CFTs which includes parafermionic theories. More... »

PAGES

14

References to SciGraph publications

  • 2001-12-17. The M5-brane on K3 and del Pezzo's and multi-loop string amplitudes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-12-22. Instanton on toric singularities and black hole countings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09-26. Instantons and 2d superconformal field theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-07-19. Super Liouville conformal blocks from SU(2) quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1990-12. Yang-Mills instantons on ALE gravitational instantons in MATHEMATISCHE ANNALEN
  • 2008-02-28. Supersymmetric gauge theories, intersecting branes and free fermions in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980-02. Basic representations of affine Lie algebras and dual resonance models in INVENTIONES MATHEMATICAE
  • 1984. Compact Complex Surfaces in NONE
  • 1988-09. Topological quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-01-22. Liouville Correlation Functions from Four-Dimensional Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • 1998-12. The Donaldson–Witten Function for Gauge Groups of Rank Larger Than One in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-05-22. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-03-21. Gauge Theories on ALE Space and Super Liouville Correlation Functions in LETTERS IN MATHEMATICAL PHYSICS
  • 1999-09-08. Holomorphic factorization of correlation functions in (4k+2)-dimensional (2k)-form gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-11-19. The Nekrasov Conjecture for Toric Surfaces in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1992. Riemann Surfaces in NONE
  • 2008-03-06. Instantons on ALE spaces and orbifold partitions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-11-04. AN−1 conformal Toda field theory correlation functions from conformal 𝒩 = 2 SU(N) quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-02-13. Parafermionic Liouville field theory and instantons on ALE spaces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-16. Instantons on ALE spaces and super Liouville conformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-04-08. Poincaré Polynomial of Moduli Spaces of Framed Sheaves on (Stacky) Hirzebruch Surfaces in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2013)014

    DOI

    http://dx.doi.org/10.1007/jhep01(2013)014

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007751345


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "I.C.T.P., Strada Costiera 11, 34014, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419330.c", 
              "name": [
                "SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy", 
                "I.C.T.P., Strada Costiera 11, 34014, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonelli", 
            "givenName": "Giulio", 
            "id": "sg:person.010004114276.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004114276.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470223.0", 
              "name": [
                "SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maruyoshi", 
            "givenName": "Kazunobu", 
            "id": "sg:person.014757666656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470223.0", 
              "name": [
                "SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tanzini", 
            "givenName": "Alessandro", 
            "id": "sg:person.011711055526.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011711055526.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.470223.0", 
              "name": [
                "SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagi", 
            "givenName": "Futoshi", 
            "id": "sg:person.012106514747.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep09(2011)117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018518728", 
              "https://doi.org/10.1007/jhep09(2011)117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-011-1231-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013852672", 
              "https://doi.org/10.1007/s00220-011-1231-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025679523", 
              "https://doi.org/10.1007/s002200050494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-012-0553-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003108834", 
              "https://doi.org/10.1007/s11005-012-0553-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0948-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047869405", 
              "https://doi.org/10.1007/s00220-009-0948-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010258718", 
              "https://doi.org/10.1007/jhep08(2011)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/12/022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038283645", 
              "https://doi.org/10.1088/1126-6708/2001/12/022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/12/073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024412817", 
              "https://doi.org/10.1088/1126-6708/2006/12/073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01223371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002704291", 
              "https://doi.org/10.1007/bf01223371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0369-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882223", 
              "https://doi.org/10.1007/s11005-010-0369-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1485-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029100231", 
              "https://doi.org/10.1007/s00220-012-1485-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/02/106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039171281", 
              "https://doi.org/10.1088/1126-6708/2008/02/106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01444534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006355794", 
              "https://doi.org/10.1007/bf01444534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2011)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003235416", 
              "https://doi.org/10.1007/jhep07(2011)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2012)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003045513", 
              "https://doi.org/10.1007/jhep02(2012)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-2034-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028558634", 
              "https://doi.org/10.1007/978-1-4612-2034-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-96754-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016299298", 
              "https://doi.org/10.1007/978-3-642-96754-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/11/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036176184", 
              "https://doi.org/10.1088/1126-6708/2009/11/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/03/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042435539", 
              "https://doi.org/10.1088/1126-6708/2008/03/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01391662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014642322", 
              "https://doi.org/10.1007/bf01391662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/09/008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045942650", 
              "https://doi.org/10.1088/1126-6708/1999/09/008"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-01-02", 
        "datePublishedReg": "2013-01-02", 
        "description": "We compute the Nekrasov partition function of gauge theories on the (resolved) toric singularities \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ {{{{{\\mathbb{C}}^2}}} \\left/ {\\varGamma } \\right.} $\\end{document} in terms of blow-up formulae. We discuss the expansion of the partition function in the \u03f51, \u03f52 \u2192 0 limit along with its modular properties and how to derive them from the M-theory perspective. On the two-dimensional conformal field theory side, our results can be interpreted in terms of representations of the direct sum of Heisenberg plus WN-algebrae with suitable central charges, which can be computed from the fan of the resolved toric variety. We provide a check of this correspondence by computing the central charge of the two-dimensional theory from the anomaly polynomial of M5-brane theory. Upon using the AGT correspondence our results provide a candidate for the conformal blocks and three-point functions of a class of the two-dimensional CFTs which includes parafermionic theories.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep01(2013)014", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "keywords": [
          "central charge", 
          "gauge theory", 
          "toric singularities", 
          "partition function", 
          "conformal field theory side", 
          "field theory side", 
          "M5-brane theory", 
          "two-dimensional CFT", 
          "two-dimensional theory", 
          "Nekrasov partition function", 
          "three-point functions", 
          "terms of blow", 
          "parafermionic theories", 
          "conformal blocks", 
          "theory side", 
          "AGT correspondence", 
          "toric varieties", 
          "modular properties", 
          "direct sum", 
          "anomaly polynomial", 
          "terms of representation", 
          "singularity", 
          "theory", 
          "formula", 
          "Heisenberg", 
          "polynomials", 
          "CFT", 
          "\u03f52", 
          "correspondence", 
          "\u03f51", 
          "function", 
          "terms", 
          "sum", 
          "class", 
          "charge", 
          "representation", 
          "theory perspective", 
          "blow", 
          "properties", 
          "limit", 
          "expansion", 
          "results", 
          "check", 
          "variety", 
          "side", 
          "block", 
          "candidates", 
          "fan", 
          "perspective"
        ], 
        "name": "gauge theories on toric singularities, blow-up formulae and W-algebrae", 
        "pagination": "14", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007751345"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2013)014"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2013)014", 
          "https://app.dimensions.ai/details/publication/pub.1007751345"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_606.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep01(2013)014"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2013)014'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2013)014'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2013)014'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2013)014'


     

    This table displays all metadata directly associated to this object as RDF triples.

    216 TRIPLES      22 PREDICATES      95 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2013)014 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3ec54e48601d40e1b2abb05024261501
    4 schema:citation sg:pub.10.1007/978-1-4612-2034-3
    5 sg:pub.10.1007/978-3-642-96754-2
    6 sg:pub.10.1007/bf01223371
    7 sg:pub.10.1007/bf01391662
    8 sg:pub.10.1007/bf01444534
    9 sg:pub.10.1007/jhep02(2012)036
    10 sg:pub.10.1007/jhep07(2011)079
    11 sg:pub.10.1007/jhep08(2011)056
    12 sg:pub.10.1007/jhep09(2011)117
    13 sg:pub.10.1007/s00220-009-0948-4
    14 sg:pub.10.1007/s00220-011-1231-z
    15 sg:pub.10.1007/s00220-012-1485-0
    16 sg:pub.10.1007/s002200050494
    17 sg:pub.10.1007/s11005-010-0369-5
    18 sg:pub.10.1007/s11005-012-0553-x
    19 sg:pub.10.1088/1126-6708/1999/09/008
    20 sg:pub.10.1088/1126-6708/2001/12/022
    21 sg:pub.10.1088/1126-6708/2006/12/073
    22 sg:pub.10.1088/1126-6708/2008/02/106
    23 sg:pub.10.1088/1126-6708/2008/03/013
    24 sg:pub.10.1088/1126-6708/2009/11/002
    25 schema:datePublished 2013-01-02
    26 schema:datePublishedReg 2013-01-02
    27 schema:description We compute the Nekrasov partition function of gauge theories on the (resolved) toric singularities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{{{\mathbb{C}}^2}}} \left/ {\varGamma } \right.} $\end{document} in terms of blow-up formulae. We discuss the expansion of the partition function in the ϵ1, ϵ2 → 0 limit along with its modular properties and how to derive them from the M-theory perspective. On the two-dimensional conformal field theory side, our results can be interpreted in terms of representations of the direct sum of Heisenberg plus WN-algebrae with suitable central charges, which can be computed from the fan of the resolved toric variety. We provide a check of this correspondence by computing the central charge of the two-dimensional theory from the anomaly polynomial of M5-brane theory. Upon using the AGT correspondence our results provide a candidate for the conformal blocks and three-point functions of a class of the two-dimensional CFTs which includes parafermionic theories.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N49d3598d00894c659318f9623eebd534
    32 N6711640dbb3f4a5c8517d47cbdb22345
    33 sg:journal.1052482
    34 schema:keywords AGT correspondence
    35 CFT
    36 Heisenberg
    37 M5-brane theory
    38 Nekrasov partition function
    39 anomaly polynomial
    40 block
    41 blow
    42 candidates
    43 central charge
    44 charge
    45 check
    46 class
    47 conformal blocks
    48 conformal field theory side
    49 correspondence
    50 direct sum
    51 expansion
    52 fan
    53 field theory side
    54 formula
    55 function
    56 gauge theory
    57 limit
    58 modular properties
    59 parafermionic theories
    60 partition function
    61 perspective
    62 polynomials
    63 properties
    64 representation
    65 results
    66 side
    67 singularity
    68 sum
    69 terms
    70 terms of blow
    71 terms of representation
    72 theory
    73 theory perspective
    74 theory side
    75 three-point functions
    76 toric singularities
    77 toric varieties
    78 two-dimensional CFT
    79 two-dimensional theory
    80 variety
    81 ϵ1
    82 ϵ2
    83 schema:name gauge theories on toric singularities, blow-up formulae and W-algebrae
    84 schema:pagination 14
    85 schema:productId N1836e0fb362b481eba7a7815fabeba6e
    86 Neb1a856be19c47f3ae3faac245eea38d
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007751345
    88 https://doi.org/10.1007/jhep01(2013)014
    89 schema:sdDatePublished 2022-05-20T07:29
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher Nea9c8bfb5f6644229c439603555011c0
    92 schema:url https://doi.org/10.1007/jhep01(2013)014
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N1836e0fb362b481eba7a7815fabeba6e schema:name dimensions_id
    97 schema:value pub.1007751345
    98 rdf:type schema:PropertyValue
    99 N3362c146946748218cf74f013ace9cf1 rdf:first sg:person.014757666656.30
    100 rdf:rest N9b62c01cd1db4cd28cd4ea6fdf4edce3
    101 N3ec54e48601d40e1b2abb05024261501 rdf:first sg:person.010004114276.10
    102 rdf:rest N3362c146946748218cf74f013ace9cf1
    103 N40b6212d781e49beb9482a481c77b61f rdf:first sg:person.012106514747.79
    104 rdf:rest rdf:nil
    105 N49d3598d00894c659318f9623eebd534 schema:issueNumber 1
    106 rdf:type schema:PublicationIssue
    107 N6711640dbb3f4a5c8517d47cbdb22345 schema:volumeNumber 2013
    108 rdf:type schema:PublicationVolume
    109 N9b62c01cd1db4cd28cd4ea6fdf4edce3 rdf:first sg:person.011711055526.18
    110 rdf:rest N40b6212d781e49beb9482a481c77b61f
    111 Nea9c8bfb5f6644229c439603555011c0 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 Neb1a856be19c47f3ae3faac245eea38d schema:name doi
    114 schema:value 10.1007/jhep01(2013)014
    115 rdf:type schema:PropertyValue
    116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Mathematical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Pure Mathematics
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1052482 schema:issn 1029-8479
    123 1126-6708
    124 schema:name Journal of High Energy Physics
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.010004114276.10 schema:affiliation grid-institutes:grid.419330.c
    128 schema:familyName Bonelli
    129 schema:givenName Giulio
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004114276.10
    131 rdf:type schema:Person
    132 sg:person.011711055526.18 schema:affiliation grid-institutes:grid.470223.0
    133 schema:familyName Tanzini
    134 schema:givenName Alessandro
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011711055526.18
    136 rdf:type schema:Person
    137 sg:person.012106514747.79 schema:affiliation grid-institutes:grid.470223.0
    138 schema:familyName Yagi
    139 schema:givenName Futoshi
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79
    141 rdf:type schema:Person
    142 sg:person.014757666656.30 schema:affiliation grid-institutes:grid.470223.0
    143 schema:familyName Maruyoshi
    144 schema:givenName Kazunobu
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30
    146 rdf:type schema:Person
    147 sg:pub.10.1007/978-1-4612-2034-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028558634
    148 https://doi.org/10.1007/978-1-4612-2034-3
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-642-96754-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016299298
    151 https://doi.org/10.1007/978-3-642-96754-2
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf01223371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002704291
    154 https://doi.org/10.1007/bf01223371
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf01391662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014642322
    157 https://doi.org/10.1007/bf01391662
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf01444534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006355794
    160 https://doi.org/10.1007/bf01444534
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep02(2012)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003045513
    163 https://doi.org/10.1007/jhep02(2012)036
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/jhep07(2011)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003235416
    166 https://doi.org/10.1007/jhep07(2011)079
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/jhep08(2011)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010258718
    169 https://doi.org/10.1007/jhep08(2011)056
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/jhep09(2011)117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018518728
    172 https://doi.org/10.1007/jhep09(2011)117
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00220-009-0948-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047869405
    175 https://doi.org/10.1007/s00220-009-0948-4
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s00220-011-1231-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013852672
    178 https://doi.org/10.1007/s00220-011-1231-z
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s00220-012-1485-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100231
    181 https://doi.org/10.1007/s00220-012-1485-0
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s002200050494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025679523
    184 https://doi.org/10.1007/s002200050494
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
    187 https://doi.org/10.1007/s11005-010-0369-5
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s11005-012-0553-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003108834
    190 https://doi.org/10.1007/s11005-012-0553-x
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1088/1126-6708/1999/09/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045942650
    193 https://doi.org/10.1088/1126-6708/1999/09/008
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1088/1126-6708/2001/12/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038283645
    196 https://doi.org/10.1088/1126-6708/2001/12/022
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1088/1126-6708/2006/12/073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024412817
    199 https://doi.org/10.1088/1126-6708/2006/12/073
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1088/1126-6708/2008/02/106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039171281
    202 https://doi.org/10.1088/1126-6708/2008/02/106
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1088/1126-6708/2008/03/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042435539
    205 https://doi.org/10.1088/1126-6708/2008/03/013
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1088/1126-6708/2009/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036176184
    208 https://doi.org/10.1088/1126-6708/2009/11/002
    209 rdf:type schema:CreativeWork
    210 grid-institutes:grid.419330.c schema:alternateName I.C.T.P., Strada Costiera 11, 34014, Trieste, Italy
    211 schema:name I.C.T.P., Strada Costiera 11, 34014, Trieste, Italy
    212 SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
    213 rdf:type schema:Organization
    214 grid-institutes:grid.470223.0 schema:alternateName SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
    215 schema:name SISSA and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
    216 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...