Complete intersection moduli spaces in gauge theories in three dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-01

AUTHORS

Amihay Hanany, Noppadol Mekareeya

ABSTRACT

We study moduli spaces of a class of three dimensional gauge theories which are in one-to-one correspondence with a certain set of ordered pairs of integer partitions. It was found that these theories can be realised on brane intervals in Type IIB string theory and can therefore be described using linear quiver diagrams. Mirror symmetry was known to act on such a theory by exchanging the partitions in the corresponding ordered pair, and hence the quiver diagram of the mirror theory can be written down in a straightforward way. The infrared Coulomb branch of each theory can be studied using moment map equations for a hyperKähler quotient of the Higgs branch of the mirror theory. We focus on three infinite subclasses of these singular hyperKähler spaces which are complete intersections. The Hilbert series of these spaces are computed in order to count generators and relations, and they turn out to be related to the corresponding partitions of the theories. For each theory, we explicitly discuss the generators of such a space and relations they satisfy in detail. These relations are precisely the defining equations of the corresponding complete intersection space. More... »

PAGES

79

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep01(2012)079

DOI

http://dx.doi.org/10.1007/jhep01(2012)079

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043468416


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Physics", 
          "id": "https://www.grid.ac/institutes/grid.435824.c", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik (Werner-Heisenberg-Institut), F\u00f6hringer Ring 6, 80805, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mekareeya", 
        "givenName": "Noppadol", 
        "id": "sg:person.014662114762.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)80030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000672730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2011)003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007953755", 
          "https://doi.org/10.1007/jhep08(2011)003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2009.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008330346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/09/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010360454", 
          "https://doi.org/10.1088/1126-6708/2006/09/031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084421", 
          "https://doi.org/10.1088/1126-6708/2008/05/099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013703167", 
          "https://doi.org/10.1088/1126-6708/2007/11/050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/217035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015401664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2008.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024628282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2011)077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028817901", 
          "https://doi.org/10.1007/jhep12(2011)077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2011.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029121471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/07/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034871803", 
          "https://doi.org/10.1088/1126-6708/2007/07/023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/10/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037453259", 
          "https://doi.org/10.1088/1126-6708/2008/10/012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656476", 
          "https://doi.org/10.1088/1126-6708/2007/03/090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2011)087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045833379", 
          "https://doi.org/10.1007/jhep08(2011)087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048017298", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04958-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048017298", 
          "https://doi.org/10.1007/978-3-662-04958-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04958-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048017298", 
          "https://doi.org/10.1007/978-3-662-04958-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2011)069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187336", 
          "https://doi.org/10.1007/jhep02(2011)069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(96)01088-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049623391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-94-07613-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.1999.v3.n1.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456932"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01", 
    "datePublishedReg": "2012-01-01", 
    "description": "We study moduli spaces of a class of three dimensional gauge theories which are in one-to-one correspondence with a certain set of ordered pairs of integer partitions. It was found that these theories can be realised on brane intervals in Type IIB string theory and can therefore be described using linear quiver diagrams. Mirror symmetry was known to act on such a theory by exchanging the partitions in the corresponding ordered pair, and hence the quiver diagram of the mirror theory can be written down in a straightforward way. The infrared Coulomb branch of each theory can be studied using moment map equations for a hyperK\u00e4hler quotient of the Higgs branch of the mirror theory. We focus on three infinite subclasses of these singular hyperK\u00e4hler spaces which are complete intersections. The Hilbert series of these spaces are computed in order to count generators and relations, and they turn out to be related to the corresponding partitions of the theories. For each theory, we explicitly discuss the generators of such a space and relations they satisfy in detail. These relations are precisely the defining equations of the corresponding complete intersection space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep01(2012)079", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2773222", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2774712", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2012"
      }
    ], 
    "name": "Complete intersection moduli spaces in gauge theories in three dimensions", 
    "pagination": "79", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf0e6cb38d20d0ec63aab4eb16f8ab297dfd37527f47c02675293a37910481ca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep01(2012)079"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043468416"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep01(2012)079", 
      "https://app.dimensions.ai/details/publication/pub.1043468416"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/JHEP01(2012)079"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2012)079'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2012)079'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2012)079'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2012)079'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep01(2012)079 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6399297fec284c51bfb70999457115a2
4 schema:citation sg:pub.10.1007/978-3-662-04958-7
5 sg:pub.10.1007/jhep02(2011)069
6 sg:pub.10.1007/jhep06(2010)100
7 sg:pub.10.1007/jhep08(2011)003
8 sg:pub.10.1007/jhep08(2011)087
9 sg:pub.10.1007/jhep12(2011)077
10 sg:pub.10.1088/1126-6708/2006/09/031
11 sg:pub.10.1088/1126-6708/2007/03/090
12 sg:pub.10.1088/1126-6708/2007/07/023
13 sg:pub.10.1088/1126-6708/2007/11/050
14 sg:pub.10.1088/1126-6708/2008/05/099
15 sg:pub.10.1088/1126-6708/2008/10/012
16 https://app.dimensions.ai/details/publication/pub.1048017298
17 https://doi.org/10.1016/0370-2693(96)01088-x
18 https://doi.org/10.1016/j.cpc.2008.08.009
19 https://doi.org/10.1016/j.nuclphysb.2009.09.016
20 https://doi.org/10.1016/j.nuclphysb.2011.05.012
21 https://doi.org/10.1016/s0550-3213(97)80030-2
22 https://doi.org/10.1155/2011/217035
23 https://doi.org/10.1215/s0012-7094-94-07613-8
24 https://doi.org/10.4310/atmp.1999.v3.n1.a1
25 schema:datePublished 2012-01
26 schema:datePublishedReg 2012-01-01
27 schema:description We study moduli spaces of a class of three dimensional gauge theories which are in one-to-one correspondence with a certain set of ordered pairs of integer partitions. It was found that these theories can be realised on brane intervals in Type IIB string theory and can therefore be described using linear quiver diagrams. Mirror symmetry was known to act on such a theory by exchanging the partitions in the corresponding ordered pair, and hence the quiver diagram of the mirror theory can be written down in a straightforward way. The infrared Coulomb branch of each theory can be studied using moment map equations for a hyperKähler quotient of the Higgs branch of the mirror theory. We focus on three infinite subclasses of these singular hyperKähler spaces which are complete intersections. The Hilbert series of these spaces are computed in order to count generators and relations, and they turn out to be related to the corresponding partitions of the theories. For each theory, we explicitly discuss the generators of such a space and relations they satisfy in detail. These relations are precisely the defining equations of the corresponding complete intersection space.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Na0cd7d85cb0d4397a800d3f5000973e3
32 Neb9aab1962aa494898fee7fdbd7494dd
33 sg:journal.1052482
34 schema:name Complete intersection moduli spaces in gauge theories in three dimensions
35 schema:pagination 79
36 schema:productId N104f72f5618347bab600b2c32ba9164f
37 N2433548a0a6a4ce0b4208c69494236bf
38 Nad57ab9b0d5148febc4b268aedf37a2e
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
40 https://doi.org/10.1007/jhep01(2012)079
41 schema:sdDatePublished 2019-04-10T20:40
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N21bbdd3fd3844e99b970927f610ae1e8
44 schema:url http://link.springer.com/10.1007/JHEP01(2012)079
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N104f72f5618347bab600b2c32ba9164f schema:name doi
49 schema:value 10.1007/jhep01(2012)079
50 rdf:type schema:PropertyValue
51 N21bbdd3fd3844e99b970927f610ae1e8 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N2433548a0a6a4ce0b4208c69494236bf schema:name dimensions_id
54 schema:value pub.1043468416
55 rdf:type schema:PropertyValue
56 N6399297fec284c51bfb70999457115a2 rdf:first sg:person.012155553275.80
57 rdf:rest Nf07f8af9e4f344f7bf1deb1668334437
58 Na0cd7d85cb0d4397a800d3f5000973e3 schema:volumeNumber 2012
59 rdf:type schema:PublicationVolume
60 Nad57ab9b0d5148febc4b268aedf37a2e schema:name readcube_id
61 schema:value cf0e6cb38d20d0ec63aab4eb16f8ab297dfd37527f47c02675293a37910481ca
62 rdf:type schema:PropertyValue
63 Neb9aab1962aa494898fee7fdbd7494dd schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nf07f8af9e4f344f7bf1deb1668334437 rdf:first sg:person.014662114762.32
66 rdf:rest rdf:nil
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:grant.2773222 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2012)079
74 rdf:type schema:MonetaryGrant
75 sg:grant.2774712 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep01(2012)079
76 rdf:type schema:MonetaryGrant
77 sg:journal.1052482 schema:issn 1029-8479
78 1126-6708
79 schema:name Journal of High Energy Physics
80 rdf:type schema:Periodical
81 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
82 schema:familyName Hanany
83 schema:givenName Amihay
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
85 rdf:type schema:Person
86 sg:person.014662114762.32 schema:affiliation https://www.grid.ac/institutes/grid.435824.c
87 schema:familyName Mekareeya
88 schema:givenName Noppadol
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32
90 rdf:type schema:Person
91 sg:pub.10.1007/978-3-662-04958-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048017298
92 https://doi.org/10.1007/978-3-662-04958-7
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/jhep02(2011)069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187336
95 https://doi.org/10.1007/jhep02(2011)069
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
98 https://doi.org/10.1007/jhep06(2010)100
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/jhep08(2011)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007953755
101 https://doi.org/10.1007/jhep08(2011)003
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/jhep08(2011)087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045833379
104 https://doi.org/10.1007/jhep08(2011)087
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/jhep12(2011)077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028817901
107 https://doi.org/10.1007/jhep12(2011)077
108 rdf:type schema:CreativeWork
109 sg:pub.10.1088/1126-6708/2006/09/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010360454
110 https://doi.org/10.1088/1126-6708/2006/09/031
111 rdf:type schema:CreativeWork
112 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
113 https://doi.org/10.1088/1126-6708/2007/03/090
114 rdf:type schema:CreativeWork
115 sg:pub.10.1088/1126-6708/2007/07/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034871803
116 https://doi.org/10.1088/1126-6708/2007/07/023
117 rdf:type schema:CreativeWork
118 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
119 https://doi.org/10.1088/1126-6708/2007/11/050
120 rdf:type schema:CreativeWork
121 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
122 https://doi.org/10.1088/1126-6708/2008/05/099
123 rdf:type schema:CreativeWork
124 sg:pub.10.1088/1126-6708/2008/10/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453259
125 https://doi.org/10.1088/1126-6708/2008/10/012
126 rdf:type schema:CreativeWork
127 https://app.dimensions.ai/details/publication/pub.1048017298 schema:CreativeWork
128 https://doi.org/10.1016/0370-2693(96)01088-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049623391
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.cpc.2008.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024628282
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.nuclphysb.2009.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008330346
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.nuclphysb.2011.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029121471
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0550-3213(97)80030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672730
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1155/2011/217035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015401664
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1215/s0012-7094-94-07613-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420021
141 rdf:type schema:CreativeWork
142 https://doi.org/10.4310/atmp.1999.v3.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456932
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.435824.c schema:alternateName Max Planck Institute for Physics
145 schema:name Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805, München, Germany
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
148 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...