Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01-21

AUTHORS

Francesco Benini, Yuji Tachikawa, Brian Wecht

ABSTRACT

In theories without known Lagrangian descriptions, knowledge of the global symmetries is often one of the few pieces of information we have at our disposal. Gauging (part of) such global symmetries can then lead to interesting new theories, which are usually still quite mysterious. In this work, we describe a set of tools that can be used to explore the superconformal phases of these theories. In particular, we describe the contribution of such non-Lagrangian sectors to the NSVZ β-function, and elucidate the counting of marginal deformations. We apply our techniques to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories obtained by mass deformations of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal theories recently found by Gaiotto. Because the basic building block of these theories is a triskelion, or trivalent vertex, we dub them “Sicilian gauge theories.” We identify these \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories as compactifications of the six-dimensional AN (2, 0) theory on Riemann surfaces with punctures and SU(2) Wilson lines. These theories include the holographic duals of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supergravity solutions found by Maldacena and Nuñez. More... »

PAGES

88

References to SciGraph publications

  • 2009-09-18. New Seiberg dualities from 𝒩 = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-03. Loop operators and S-duality from curves on Riemann surfaces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-07-20. Six-dimensional DN theory and four-dimensional SO-USp quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-06-17. On exactly marginal deformations of 𝒩 = 4 SYM and Type IIB Supergravity on AdS5 × S5 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-04-27. On inherited duality in 𝒩 = 1 d = 4 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-12-01. Argyres-Seiberg Duality and the Higgs Branch in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-01-31. Infinite coupling duals of N = 2 gauge theories and new rank 1 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-08-27. N = 2 SU quiver with USP ends or SU ends with antisymmetric matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-07-30. The holographic Weyl anomaly in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-08-04. Conformal manifolds for the conifold and other toric field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-06-19. Holomorphy, rescaling anomalies and exact β functions in supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-09-19. On Conformal Deformations in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-09-07. Non-abelian tensor-multiplet anomalies in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2010)088

    DOI

    http://dx.doi.org/10.1007/jhep01(2010)088

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032453331


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benini", 
            "givenName": "Francesco", 
            "id": "sg:person.011505670225.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tachikawa", 
            "givenName": "Yuji", 
            "id": "sg:person.010520672276.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wecht", 
            "givenName": "Brian", 
            "id": "sg:person.01104272502.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272502.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2005/08/024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008508234", 
              "https://doi.org/10.1088/1126-6708/2005/08/024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/08/108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038528503", 
              "https://doi.org/10.1088/1126-6708/2009/08/108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/07/023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035469031", 
              "https://doi.org/10.1088/1126-6708/1998/07/023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/01/074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041867495", 
              "https://doi.org/10.1088/1126-6708/2008/01/074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053003276", 
              "https://doi.org/10.1088/1126-6708/2009/09/031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018116770", 
              "https://doi.org/10.1088/1126-6708/2009/09/086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0938-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037774778", 
              "https://doi.org/10.1007/s00220-009-0938-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/09/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013774880", 
              "https://doi.org/10.1088/1126-6708/1998/09/004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/04/029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000375545", 
              "https://doi.org/10.1088/1126-6708/2000/04/029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/06/030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052448266", 
              "https://doi.org/10.1088/1126-6708/2000/06/030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/06/039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027235079", 
              "https://doi.org/10.1088/1126-6708/2002/06/039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/09/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024612482", 
              "https://doi.org/10.1088/1126-6708/2002/09/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047269577", 
              "https://doi.org/10.1088/1126-6708/2009/07/067"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-01-21", 
        "datePublishedReg": "2010-01-21", 
        "description": "In theories without known Lagrangian descriptions, knowledge of the global symmetries is often one of the few pieces of information we have at our disposal. Gauging (part of) such global symmetries can then lead to interesting new theories, which are usually still quite mysterious. In this work, we describe a set of tools that can be used to explore the superconformal phases of these theories. In particular, we describe the contribution of such non-Lagrangian sectors to the NSVZ \u03b2-function, and elucidate the counting of marginal deformations. We apply our techniques to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 theories obtained by mass deformations of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 conformal theories recently found by Gaiotto. Because the basic building block of these theories is a triskelion, or trivalent vertex, we dub them \u201cSicilian gauge theories.\u201d We identify these \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 theories as compactifications of the six-dimensional AN (2, 0) theory on Riemann surfaces with punctures and SU(2) Wilson lines. These theories include the holographic duals of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 supergravity solutions found by Maldacena and Nu\u00f1ez.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep01(2010)088", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2010"
          }
        ], 
        "keywords": [
          "global symmetry", 
          "gauge theory", 
          "Lagrangian description", 
          "Such global symmetries", 
          "NSVZ \u03b2-function", 
          "\u03b2-function", 
          "marginal deformations", 
          "conformal theory", 
          "trivalent vertices", 
          "Riemann surface", 
          "holographic dual", 
          "supergravity solutions", 
          "theory", 
          "new theory", 
          "Wilson lines", 
          "symmetry", 
          "mass deformation", 
          "Gaiotto", 
          "basic building blocks", 
          "compactification", 
          "Maldacena", 
          "duality", 
          "pieces of information", 
          "set of tools", 
          "vertices", 
          "dual", 
          "solution", 
          "Nu\u00f1ez", 
          "description", 
          "set", 
          "deformation", 
          "technique", 
          "building blocks", 
          "information", 
          "work", 
          "tool", 
          "phase", 
          "contribution", 
          "counting", 
          "surface", 
          "lines", 
          "knowledge", 
          "pieces", 
          "block", 
          "disposal", 
          "sector", 
          "triskelions", 
          "puncture"
        ], 
        "name": "Sicilian gauge theories and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 dualities", 
        "pagination": "88", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032453331"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2010)088"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2010)088", 
          "https://app.dimensions.ai/details/publication/pub.1032453331"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_523.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep01(2010)088"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      21 PREDICATES      87 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2010)088 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndc19e1ae830e4381a8d698dfa158f15d
    4 schema:citation sg:pub.10.1007/s00220-009-0938-6
    5 sg:pub.10.1088/1126-6708/1998/07/023
    6 sg:pub.10.1088/1126-6708/1998/09/004
    7 sg:pub.10.1088/1126-6708/2000/04/029
    8 sg:pub.10.1088/1126-6708/2000/06/030
    9 sg:pub.10.1088/1126-6708/2002/06/039
    10 sg:pub.10.1088/1126-6708/2002/09/046
    11 sg:pub.10.1088/1126-6708/2005/08/024
    12 sg:pub.10.1088/1126-6708/2007/12/088
    13 sg:pub.10.1088/1126-6708/2008/01/074
    14 sg:pub.10.1088/1126-6708/2009/07/067
    15 sg:pub.10.1088/1126-6708/2009/08/108
    16 sg:pub.10.1088/1126-6708/2009/09/031
    17 sg:pub.10.1088/1126-6708/2009/09/052
    18 sg:pub.10.1088/1126-6708/2009/09/086
    19 schema:datePublished 2010-01-21
    20 schema:datePublishedReg 2010-01-21
    21 schema:description In theories without known Lagrangian descriptions, knowledge of the global symmetries is often one of the few pieces of information we have at our disposal. Gauging (part of) such global symmetries can then lead to interesting new theories, which are usually still quite mysterious. In this work, we describe a set of tools that can be used to explore the superconformal phases of these theories. In particular, we describe the contribution of such non-Lagrangian sectors to the NSVZ β-function, and elucidate the counting of marginal deformations. We apply our techniques to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories obtained by mass deformations of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal theories recently found by Gaiotto. Because the basic building block of these theories is a triskelion, or trivalent vertex, we dub them “Sicilian gauge theories.” We identify these \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories as compactifications of the six-dimensional AN (2, 0) theory on Riemann surfaces with punctures and SU(2) Wilson lines. These theories include the holographic duals of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supergravity solutions found by Maldacena and Nuñez.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N0d06c24af4774cf9accbab2b2d88a856
    25 N25b516296b814ff49c93c4e57e7cbec6
    26 sg:journal.1052482
    27 schema:keywords Gaiotto
    28 Lagrangian description
    29 Maldacena
    30 NSVZ β-function
    31 Nuñez
    32 Riemann surface
    33 Such global symmetries
    34 Wilson lines
    35 basic building blocks
    36 block
    37 building blocks
    38 compactification
    39 conformal theory
    40 contribution
    41 counting
    42 deformation
    43 description
    44 disposal
    45 dual
    46 duality
    47 gauge theory
    48 global symmetry
    49 holographic dual
    50 information
    51 knowledge
    52 lines
    53 marginal deformations
    54 mass deformation
    55 new theory
    56 phase
    57 pieces
    58 pieces of information
    59 puncture
    60 sector
    61 set
    62 set of tools
    63 solution
    64 supergravity solutions
    65 surface
    66 symmetry
    67 technique
    68 theory
    69 tool
    70 triskelions
    71 trivalent vertices
    72 vertices
    73 work
    74 β-function
    75 schema:name Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities
    76 schema:pagination 88
    77 schema:productId N49d0fe3f80574af9af88480e6fd3b994
    78 N5a3babde4c70401cabe9d3178ad4f612
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
    80 https://doi.org/10.1007/jhep01(2010)088
    81 schema:sdDatePublished 2022-08-04T16:58
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N3743e49320c441fba3e98da60f5818cc
    84 schema:url https://doi.org/10.1007/jhep01(2010)088
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N0d06c24af4774cf9accbab2b2d88a856 schema:issueNumber 1
    89 rdf:type schema:PublicationIssue
    90 N0e0d5f6ccaf64a7f88749fb660a12fae rdf:first sg:person.010520672276.19
    91 rdf:rest N475b12fc5e1c43b28ca3c80b9d4e6ef1
    92 N25b516296b814ff49c93c4e57e7cbec6 schema:volumeNumber 2010
    93 rdf:type schema:PublicationVolume
    94 N3743e49320c441fba3e98da60f5818cc schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 N475b12fc5e1c43b28ca3c80b9d4e6ef1 rdf:first sg:person.01104272502.47
    97 rdf:rest rdf:nil
    98 N49d0fe3f80574af9af88480e6fd3b994 schema:name dimensions_id
    99 schema:value pub.1032453331
    100 rdf:type schema:PropertyValue
    101 N5a3babde4c70401cabe9d3178ad4f612 schema:name doi
    102 schema:value 10.1007/jhep01(2010)088
    103 rdf:type schema:PropertyValue
    104 Ndc19e1ae830e4381a8d698dfa158f15d rdf:first sg:person.011505670225.30
    105 rdf:rest N0e0d5f6ccaf64a7f88749fb660a12fae
    106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Mathematical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Pure Mathematics
    111 rdf:type schema:DefinedTerm
    112 sg:journal.1052482 schema:issn 1029-8479
    113 1126-6708
    114 schema:name Journal of High Energy Physics
    115 schema:publisher Springer Nature
    116 rdf:type schema:Periodical
    117 sg:person.010520672276.19 schema:affiliation grid-institutes:grid.78989.37
    118 schema:familyName Tachikawa
    119 schema:givenName Yuji
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
    121 rdf:type schema:Person
    122 sg:person.01104272502.47 schema:affiliation grid-institutes:grid.78989.37
    123 schema:familyName Wecht
    124 schema:givenName Brian
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272502.47
    126 rdf:type schema:Person
    127 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.16750.35
    128 schema:familyName Benini
    129 schema:givenName Francesco
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
    131 rdf:type schema:Person
    132 sg:pub.10.1007/s00220-009-0938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774778
    133 https://doi.org/10.1007/s00220-009-0938-6
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1088/1126-6708/1998/07/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035469031
    136 https://doi.org/10.1088/1126-6708/1998/07/023
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1088/1126-6708/1998/09/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013774880
    139 https://doi.org/10.1088/1126-6708/1998/09/004
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1088/1126-6708/2000/04/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000375545
    142 https://doi.org/10.1088/1126-6708/2000/04/029
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1088/1126-6708/2000/06/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052448266
    145 https://doi.org/10.1088/1126-6708/2000/06/030
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1088/1126-6708/2002/06/039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027235079
    148 https://doi.org/10.1088/1126-6708/2002/06/039
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1088/1126-6708/2002/09/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612482
    151 https://doi.org/10.1088/1126-6708/2002/09/046
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1088/1126-6708/2005/08/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008508234
    154 https://doi.org/10.1088/1126-6708/2005/08/024
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    157 https://doi.org/10.1088/1126-6708/2007/12/088
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1088/1126-6708/2008/01/074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867495
    160 https://doi.org/10.1088/1126-6708/2008/01/074
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
    163 https://doi.org/10.1088/1126-6708/2009/07/067
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1088/1126-6708/2009/08/108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038528503
    166 https://doi.org/10.1088/1126-6708/2009/08/108
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1088/1126-6708/2009/09/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003276
    169 https://doi.org/10.1088/1126-6708/2009/09/031
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    172 https://doi.org/10.1088/1126-6708/2009/09/052
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1088/1126-6708/2009/09/086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018116770
    175 https://doi.org/10.1088/1126-6708/2009/09/086
    176 rdf:type schema:CreativeWork
    177 grid-institutes:grid.16750.35 schema:alternateName Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A.
    178 schema:name Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A.
    179 rdf:type schema:Organization
    180 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.
    181 schema:name School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...