Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

Francesco Benini, Yuji Tachikawa, Brian Wecht

ABSTRACT

In theories without known Lagrangian descriptions, knowledge of the global symmetries is often one of the few pieces of information we have at our disposal. Gauging (part of) such global symmetries can then lead to interesting new theories, which are usually still quite mysterious. In this work, we describe a set of tools that can be used to explore the superconformal phases of these theories. In particular, we describe the contribution of such non-Lagrangian sectors to the NSVZ β-function, and elucidate the counting of marginal deformations. We apply our techniques to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories obtained by mass deformations of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal theories recently found by Gaiotto. Because the basic building block of these theories is a triskelion, or trivalent vertex, we dub them “Sicilian gauge theories.” We identify these \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories as compactifications of the six-dimensional AN (2, 0) theory on Riemann surfaces with punctures and SU(2) Wilson lines. These theories include the holographic duals of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supergravity solutions found by Maldacena and Nuñez. More... »

PAGES

88

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep01(2010)088

DOI

http://dx.doi.org/10.1007/jhep01(2010)088

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032453331


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benini", 
        "givenName": "Francesco", 
        "id": "sg:person.011505670225.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tachikawa", 
        "givenName": "Yuji", 
        "id": "sg:person.010520672276.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wecht", 
        "givenName": "Brian", 
        "id": "sg:person.01104272502.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272502.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1088/1126-6708/2000/04/029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000375545", 
          "https://doi.org/10.1088/1126-6708/2000/04/029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004902104", 
          "https://doi.org/10.1088/1126-6708/2009/09/052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004902104", 
          "https://doi.org/10.1088/1126-6708/2009/09/052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)00007-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006540143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2005/08/024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008508234", 
          "https://doi.org/10.1088/1126-6708/2005/08/024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2005/08/024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008508234", 
          "https://doi.org/10.1088/1126-6708/2005/08/024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(86)90810-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010841824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(86)90810-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010841824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/09/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013774880", 
          "https://doi.org/10.1088/1126-6708/1998/09/004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00039-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015211996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00278-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017373406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018116770", 
          "https://doi.org/10.1088/1126-6708/2009/09/086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018116770", 
          "https://doi.org/10.1088/1126-6708/2009/09/086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/09/046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024612482", 
          "https://doi.org/10.1088/1126-6708/2002/09/046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/06/039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027235079", 
          "https://doi.org/10.1088/1126-6708/2002/06/039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/17/3/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028962007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2005.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029097048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0393-0440(97)80160-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029662323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00261-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029767902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(99)00500-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030539931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/07/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035469031", 
          "https://doi.org/10.1088/1126-6708/1998/07/023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037097604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037097604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0938-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037774778", 
          "https://doi.org/10.1007/s00220-009-0938-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/08/108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038528503", 
          "https://doi.org/10.1088/1126-6708/2009/08/108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/08/108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038528503", 
          "https://doi.org/10.1088/1126-6708/2009/08/108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/01/074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867495", 
          "https://doi.org/10.1088/1126-6708/2008/01/074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269577", 
          "https://doi.org/10.1088/1126-6708/2009/07/067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269577", 
          "https://doi.org/10.1088/1126-6708/2009/07/067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00419-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050369632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00008-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050913923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051078287", 
          "https://doi.org/10.1088/1126-6708/2007/12/088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(96)00687-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051810982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(96)00552-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052171491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/06/030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052448266", 
          "https://doi.org/10.1088/1126-6708/2000/06/030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(83)90338-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052486746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(83)90338-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052486746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003276", 
          "https://doi.org/10.1088/1126-6708/2009/09/031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003276", 
          "https://doi.org/10.1088/1126-6708/2009/09/031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00416-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053448346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x01003937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062921757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptps.177.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063144201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2006.v10.n2.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457165"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "In theories without known Lagrangian descriptions, knowledge of the global symmetries is often one of the few pieces of information we have at our disposal. Gauging (part of) such global symmetries can then lead to interesting new theories, which are usually still quite mysterious. In this work, we describe a set of tools that can be used to explore the superconformal phases of these theories. In particular, we describe the contribution of such non-Lagrangian sectors to the NSVZ \u03b2-function, and elucidate the counting of marginal deformations. We apply our techniques to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 theories obtained by mass deformations of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 conformal theories recently found by Gaiotto. Because the basic building block of these theories is a triskelion, or trivalent vertex, we dub them \u201cSicilian gauge theories.\u201d We identify these \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 theories as compactifications of the six-dimensional AN (2, 0) theory on Riemann surfaces with punctures and SU(2) Wilson lines. These theories include the holographic duals of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 supergravity solutions found by Maldacena and Nu\u00f1ez.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep01(2010)088", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "Sicilian gauge theories and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 dualities", 
    "pagination": "88", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a9a538d0fd491a8026bd6a5fc655419a8f2cef6a82a0938f25048c87dec783c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep01(2010)088"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032453331"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep01(2010)088", 
      "https://app.dimensions.ai/details/publication/pub.1032453331"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89814_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP01%282010%29088"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)088'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep01(2010)088 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2d7536f43730482f925260112a439acf
4 schema:citation sg:pub.10.1007/s00220-009-0938-6
5 sg:pub.10.1088/1126-6708/1998/07/023
6 sg:pub.10.1088/1126-6708/1998/09/004
7 sg:pub.10.1088/1126-6708/2000/04/029
8 sg:pub.10.1088/1126-6708/2000/06/030
9 sg:pub.10.1088/1126-6708/2002/06/039
10 sg:pub.10.1088/1126-6708/2002/09/046
11 sg:pub.10.1088/1126-6708/2005/08/024
12 sg:pub.10.1088/1126-6708/2007/12/088
13 sg:pub.10.1088/1126-6708/2008/01/074
14 sg:pub.10.1088/1126-6708/2009/07/067
15 sg:pub.10.1088/1126-6708/2009/08/108
16 sg:pub.10.1088/1126-6708/2009/09/031
17 sg:pub.10.1088/1126-6708/2009/09/052
18 sg:pub.10.1088/1126-6708/2009/09/086
19 https://doi.org/10.1016/0370-2693(86)90810-5
20 https://doi.org/10.1016/0550-3213(83)90338-3
21 https://doi.org/10.1016/0550-3213(95)00261-p
22 https://doi.org/10.1016/j.nuclphysb.2005.10.003
23 https://doi.org/10.1016/s0370-2693(97)00007-5
24 https://doi.org/10.1016/s0370-2693(99)00500-6
25 https://doi.org/10.1016/s0393-0440(97)80160-x
26 https://doi.org/10.1016/s0550-3213(96)00552-4
27 https://doi.org/10.1016/s0550-3213(96)00687-6
28 https://doi.org/10.1016/s0550-3213(97)00039-4
29 https://doi.org/10.1016/s0550-3213(97)00416-1
30 https://doi.org/10.1016/s0550-3213(98)00278-8
31 https://doi.org/10.1016/s0550-3213(99)00008-5
32 https://doi.org/10.1016/s0550-3213(99)00419-8
33 https://doi.org/10.1088/0264-9381/17/3/307
34 https://doi.org/10.1103/physrevlett.103.061601
35 https://doi.org/10.1142/s0217751x01003937
36 https://doi.org/10.1143/ptps.177.143
37 https://doi.org/10.4310/atmp.2006.v10.n2.a1
38 schema:datePublished 2010-01
39 schema:datePublishedReg 2010-01-01
40 schema:description In theories without known Lagrangian descriptions, knowledge of the global symmetries is often one of the few pieces of information we have at our disposal. Gauging (part of) such global symmetries can then lead to interesting new theories, which are usually still quite mysterious. In this work, we describe a set of tools that can be used to explore the superconformal phases of these theories. In particular, we describe the contribution of such non-Lagrangian sectors to the NSVZ β-function, and elucidate the counting of marginal deformations. We apply our techniques to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories obtained by mass deformations of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 conformal theories recently found by Gaiotto. Because the basic building block of these theories is a triskelion, or trivalent vertex, we dub them “Sicilian gauge theories.” We identify these \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories as compactifications of the six-dimensional AN (2, 0) theory on Riemann surfaces with punctures and SU(2) Wilson lines. These theories include the holographic duals of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supergravity solutions found by Maldacena and Nuñez.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N39431bff3dc3427ab2ef399dce8b5f07
45 Nfeda7531b79d473f8252ceef829c3a48
46 sg:journal.1052482
47 schema:name Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities
48 schema:pagination 88
49 schema:productId N075d643b12ad4ae89c8f066cce8abb56
50 N16562df6dd9c49a4832c49ef28cdf334
51 Nc8dc429c4ad044158a7f8c177158c0e2
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
53 https://doi.org/10.1007/jhep01(2010)088
54 schema:sdDatePublished 2019-04-11T09:59
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc0c964bfd03e43caab8064d86dc71a2a
57 schema:url https://link.springer.com/10.1007%2FJHEP01%282010%29088
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N075d643b12ad4ae89c8f066cce8abb56 schema:name dimensions_id
62 schema:value pub.1032453331
63 rdf:type schema:PropertyValue
64 N16562df6dd9c49a4832c49ef28cdf334 schema:name doi
65 schema:value 10.1007/jhep01(2010)088
66 rdf:type schema:PropertyValue
67 N2d7536f43730482f925260112a439acf rdf:first sg:person.011505670225.30
68 rdf:rest N2e372a95abcd4cdd84c2e6180c3ddd67
69 N2e372a95abcd4cdd84c2e6180c3ddd67 rdf:first sg:person.010520672276.19
70 rdf:rest Nc49c8090b13e47959708035c000cf41a
71 N39431bff3dc3427ab2ef399dce8b5f07 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 Nc0c964bfd03e43caab8064d86dc71a2a schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nc49c8090b13e47959708035c000cf41a rdf:first sg:person.01104272502.47
76 rdf:rest rdf:nil
77 Nc8dc429c4ad044158a7f8c177158c0e2 schema:name readcube_id
78 schema:value 9a9a538d0fd491a8026bd6a5fc655419a8f2cef6a82a0938f25048c87dec783c
79 rdf:type schema:PropertyValue
80 Nfeda7531b79d473f8252ceef829c3a48 schema:volumeNumber 2010
81 rdf:type schema:PublicationVolume
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:journal.1052482 schema:issn 1029-8479
89 1126-6708
90 schema:name Journal of High Energy Physics
91 rdf:type schema:Periodical
92 sg:person.010520672276.19 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
93 schema:familyName Tachikawa
94 schema:givenName Yuji
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
96 rdf:type schema:Person
97 sg:person.01104272502.47 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
98 schema:familyName Wecht
99 schema:givenName Brian
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272502.47
101 rdf:type schema:Person
102 sg:person.011505670225.30 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
103 schema:familyName Benini
104 schema:givenName Francesco
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
106 rdf:type schema:Person
107 sg:pub.10.1007/s00220-009-0938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774778
108 https://doi.org/10.1007/s00220-009-0938-6
109 rdf:type schema:CreativeWork
110 sg:pub.10.1088/1126-6708/1998/07/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035469031
111 https://doi.org/10.1088/1126-6708/1998/07/023
112 rdf:type schema:CreativeWork
113 sg:pub.10.1088/1126-6708/1998/09/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013774880
114 https://doi.org/10.1088/1126-6708/1998/09/004
115 rdf:type schema:CreativeWork
116 sg:pub.10.1088/1126-6708/2000/04/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000375545
117 https://doi.org/10.1088/1126-6708/2000/04/029
118 rdf:type schema:CreativeWork
119 sg:pub.10.1088/1126-6708/2000/06/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052448266
120 https://doi.org/10.1088/1126-6708/2000/06/030
121 rdf:type schema:CreativeWork
122 sg:pub.10.1088/1126-6708/2002/06/039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027235079
123 https://doi.org/10.1088/1126-6708/2002/06/039
124 rdf:type schema:CreativeWork
125 sg:pub.10.1088/1126-6708/2002/09/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612482
126 https://doi.org/10.1088/1126-6708/2002/09/046
127 rdf:type schema:CreativeWork
128 sg:pub.10.1088/1126-6708/2005/08/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008508234
129 https://doi.org/10.1088/1126-6708/2005/08/024
130 rdf:type schema:CreativeWork
131 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
132 https://doi.org/10.1088/1126-6708/2007/12/088
133 rdf:type schema:CreativeWork
134 sg:pub.10.1088/1126-6708/2008/01/074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867495
135 https://doi.org/10.1088/1126-6708/2008/01/074
136 rdf:type schema:CreativeWork
137 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
138 https://doi.org/10.1088/1126-6708/2009/07/067
139 rdf:type schema:CreativeWork
140 sg:pub.10.1088/1126-6708/2009/08/108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038528503
141 https://doi.org/10.1088/1126-6708/2009/08/108
142 rdf:type schema:CreativeWork
143 sg:pub.10.1088/1126-6708/2009/09/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003276
144 https://doi.org/10.1088/1126-6708/2009/09/031
145 rdf:type schema:CreativeWork
146 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
147 https://doi.org/10.1088/1126-6708/2009/09/052
148 rdf:type schema:CreativeWork
149 sg:pub.10.1088/1126-6708/2009/09/086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018116770
150 https://doi.org/10.1088/1126-6708/2009/09/086
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0370-2693(86)90810-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010841824
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0550-3213(83)90338-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052486746
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0550-3213(95)00261-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1029767902
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.nuclphysb.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029097048
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0370-2693(97)00007-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006540143
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0370-2693(99)00500-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030539931
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0393-0440(97)80160-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029662323
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0550-3213(96)00552-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052171491
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0550-3213(96)00687-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051810982
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0550-3213(97)00039-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015211996
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0550-3213(97)00416-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053448346
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0550-3213(98)00278-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017373406
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0550-3213(99)00008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050913923
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0550-3213(99)00419-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369632
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/0264-9381/17/3/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028962007
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.103.061601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037097604
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1142/s0217751x01003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062921757
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1143/ptps.177.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063144201
187 rdf:type schema:CreativeWork
188 https://doi.org/10.4310/atmp.2006.v10.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457165
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
191 schema:name Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A.
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
194 schema:name School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A.
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...