Covariant representation theory of the Poincaré algebra and some of its extensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

Rutger Boels

ABSTRACT

There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background. More... »

PAGES

10

References to SciGraph publications

  • 2009-07-21. Amplitudes and spinor-helicity in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-09-11. Dual superconformal symmetry, and the amplitude/Wilson loop connection in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-11-07. MHV, CSW and BCFW: field theory structures in string theory amplitudes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-12. Perturbative Gauge Theory as a String Theory in Twistor Space in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2004-09-03. MHV vertices and tree amplitudes in gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-03-07. SUSY Ward identities for multi-gluon helicity amplitudes with massive quarks in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-04-15. Super-Poincare covariant quantization of the superstring in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-04-14. Full one-loop amplitudes from tree amplitudes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-12-21. Higher-dimensional twistor transforms using pure spinors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-04-18. On tree amplitudes in gauge theory and gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • Journal

    TITLE

    Journal of High Energy Physics

    ISSUE

    1

    VOLUME

    2010

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep01(2010)010

    DOI

    http://dx.doi.org/10.1007/jhep01(2010)010

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024372854


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boels", 
            "givenName": "Rutger", 
            "id": "sg:person.07517336540.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517336540.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevd.78.085011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000890177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.085011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000890177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.02.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002295203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)91471-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002658323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)91471-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002658323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/12/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002976197", 
              "https://doi.org/10.1088/1126-6708/2004/12/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/09/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003905464", 
              "https://doi.org/10.1088/1126-6708/2004/09/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/04/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006625802", 
              "https://doi.org/10.1088/1126-6708/2008/04/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aop.2007.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007461366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012696655", 
              "https://doi.org/10.1088/1126-6708/2009/07/075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012696655", 
              "https://doi.org/10.1088/1126-6708/2009/07/075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90162-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022547150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90162-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022547150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/03/030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022823609", 
              "https://doi.org/10.1088/1126-6708/2006/03/030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/03/030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022823609", 
              "https://doi.org/10.1088/1126-6708/2006/03/030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.70.066010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023949261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.70.066010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023949261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(86)90362-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024458682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(86)90362-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024458682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2007.09.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025806615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.161602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027803202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.161602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027803202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.016007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029355932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.016007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029355932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/11/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029610240", 
              "https://doi.org/10.1088/1126-6708/2008/11/015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/09/062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029942980", 
              "https://doi.org/10.1088/1126-6708/2008/09/062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.181602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031658844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.181602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031658844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(77)90277-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033411060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(77)90277-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033411060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/04/018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045078250", 
              "https://doi.org/10.1088/1126-6708/2000/04/018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(99)00760-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047502822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/04/076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048073217", 
              "https://doi.org/10.1088/1126-6708/2008/04/076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-004-1187-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053494292", 
              "https://doi.org/10.1007/s00220-004-1187-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.13.2291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060683878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.13.2291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060683878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.15.996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060685044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.15.996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060685044"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-01", 
        "datePublishedReg": "2010-01-01", 
        "description": "There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincar\u00e9 algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincar\u00e9 algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep01(2010)010", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2010"
          }
        ], 
        "name": "Covariant representation theory of the Poincar\u00e9 algebra and some of its extensions", 
        "pagination": "10", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "741d5de3bf26f194d8adcff3a00cd4d42d75aecf288e5c13402bd288d9f1a29b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep01(2010)010"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024372854"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep01(2010)010", 
          "https://app.dimensions.ai/details/publication/pub.1024372854"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP01%282010%29010"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep01(2010)010 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N93ab1db90c1c4e13af243e1d601d63a9
    4 schema:citation sg:pub.10.1007/s00220-004-1187-3
    5 sg:pub.10.1088/1126-6708/2000/04/018
    6 sg:pub.10.1088/1126-6708/2004/09/006
    7 sg:pub.10.1088/1126-6708/2004/12/049
    8 sg:pub.10.1088/1126-6708/2006/03/030
    9 sg:pub.10.1088/1126-6708/2008/04/049
    10 sg:pub.10.1088/1126-6708/2008/04/076
    11 sg:pub.10.1088/1126-6708/2008/09/062
    12 sg:pub.10.1088/1126-6708/2008/11/015
    13 sg:pub.10.1088/1126-6708/2009/07/075
    14 https://doi.org/10.1016/0370-2693(88)91471-2
    15 https://doi.org/10.1016/0550-3213(77)90277-2
    16 https://doi.org/10.1016/0550-3213(79)90162-7
    17 https://doi.org/10.1016/0550-3213(86)90362-7
    18 https://doi.org/10.1016/j.aop.2007.04.014
    19 https://doi.org/10.1016/j.nuclphysb.2005.02.030
    20 https://doi.org/10.1016/j.nuclphysb.2007.09.033
    21 https://doi.org/10.1016/s0370-2693(99)00760-1
    22 https://doi.org/10.1103/physrevd.13.2291
    23 https://doi.org/10.1103/physrevd.15.996
    24 https://doi.org/10.1103/physrevd.59.016007
    25 https://doi.org/10.1103/physrevd.70.066010
    26 https://doi.org/10.1103/physrevd.78.085011
    27 https://doi.org/10.1103/physrevlett.103.161602
    28 https://doi.org/10.1103/physrevlett.94.181602
    29 schema:datePublished 2010-01
    30 schema:datePublishedReg 2010-01-01
    31 schema:description There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Naac4f8c701814e25840e673bfd5d9729
    36 Nb876cec08f394272a14c63f8a80cbbae
    37 sg:journal.1052482
    38 schema:name Covariant representation theory of the Poincaré algebra and some of its extensions
    39 schema:pagination 10
    40 schema:productId N6c0ca992c9224d70bc73deef4f46cf3d
    41 Nbac105bb27f7455ea6ae0c2c4234bc44
    42 Nf0e729993f054919a21f8eee6db52d1d
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024372854
    44 https://doi.org/10.1007/jhep01(2010)010
    45 schema:sdDatePublished 2019-04-11T09:53
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N3a5701ce0e7b47ebabe257d73533006a
    48 schema:url https://link.springer.com/10.1007%2FJHEP01%282010%29010
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N3a5701ce0e7b47ebabe257d73533006a schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N6c0ca992c9224d70bc73deef4f46cf3d schema:name doi
    55 schema:value 10.1007/jhep01(2010)010
    56 rdf:type schema:PropertyValue
    57 N93ab1db90c1c4e13af243e1d601d63a9 rdf:first sg:person.07517336540.25
    58 rdf:rest rdf:nil
    59 Naac4f8c701814e25840e673bfd5d9729 schema:issueNumber 1
    60 rdf:type schema:PublicationIssue
    61 Nb876cec08f394272a14c63f8a80cbbae schema:volumeNumber 2010
    62 rdf:type schema:PublicationVolume
    63 Nbac105bb27f7455ea6ae0c2c4234bc44 schema:name readcube_id
    64 schema:value 741d5de3bf26f194d8adcff3a00cd4d42d75aecf288e5c13402bd288d9f1a29b
    65 rdf:type schema:PropertyValue
    66 Nf0e729993f054919a21f8eee6db52d1d schema:name dimensions_id
    67 schema:value pub.1024372854
    68 rdf:type schema:PropertyValue
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1052482 schema:issn 1029-8479
    76 1126-6708
    77 schema:name Journal of High Energy Physics
    78 rdf:type schema:Periodical
    79 sg:person.07517336540.25 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    80 schema:familyName Boels
    81 schema:givenName Rutger
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517336540.25
    83 rdf:type schema:Person
    84 sg:pub.10.1007/s00220-004-1187-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053494292
    85 https://doi.org/10.1007/s00220-004-1187-3
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1088/1126-6708/2000/04/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045078250
    88 https://doi.org/10.1088/1126-6708/2000/04/018
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1088/1126-6708/2004/09/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003905464
    91 https://doi.org/10.1088/1126-6708/2004/09/006
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1088/1126-6708/2004/12/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002976197
    94 https://doi.org/10.1088/1126-6708/2004/12/049
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1088/1126-6708/2006/03/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022823609
    97 https://doi.org/10.1088/1126-6708/2006/03/030
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1088/1126-6708/2008/04/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006625802
    100 https://doi.org/10.1088/1126-6708/2008/04/049
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1088/1126-6708/2008/04/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048073217
    103 https://doi.org/10.1088/1126-6708/2008/04/076
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1088/1126-6708/2008/09/062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029942980
    106 https://doi.org/10.1088/1126-6708/2008/09/062
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1088/1126-6708/2008/11/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029610240
    109 https://doi.org/10.1088/1126-6708/2008/11/015
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1088/1126-6708/2009/07/075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012696655
    112 https://doi.org/10.1088/1126-6708/2009/07/075
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0370-2693(88)91471-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002658323
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0550-3213(77)90277-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033411060
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/0550-3213(79)90162-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022547150
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/0550-3213(86)90362-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024458682
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.aop.2007.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007461366
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.nuclphysb.2005.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002295203
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.nuclphysb.2007.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025806615
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/s0370-2693(99)00760-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047502822
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrevd.13.2291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060683878
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physrevd.15.996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060685044
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physrevd.59.016007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029355932
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physrevd.70.066010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023949261
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrevd.78.085011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000890177
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physrevlett.103.161602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027803202
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.94.181602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031658844
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    145 schema:name Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...