Covariant representation theory of the Poincaré algebra and some of its extensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

Rutger Boels

ABSTRACT

There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background. More... »

PAGES

10

Journal

TITLE

Journal of High Energy Physics

ISSUE

1

VOLUME

2010

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep01(2010)010

DOI

http://dx.doi.org/10.1007/jhep01(2010)010

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024372854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boels", 
        "givenName": "Rutger", 
        "id": "sg:person.07517336540.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517336540.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevd.78.085011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000890177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.085011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000890177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2005.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002295203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(88)91471-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002658323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(88)91471-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002658323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2004/12/049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002976197", 
          "https://doi.org/10.1088/1126-6708/2004/12/049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2004/09/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003905464", 
          "https://doi.org/10.1088/1126-6708/2004/09/006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/04/049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006625802", 
          "https://doi.org/10.1088/1126-6708/2008/04/049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2007.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007461366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012696655", 
          "https://doi.org/10.1088/1126-6708/2009/07/075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/07/075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012696655", 
          "https://doi.org/10.1088/1126-6708/2009/07/075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(79)90162-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022547150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(79)90162-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022547150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/03/030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823609", 
          "https://doi.org/10.1088/1126-6708/2006/03/030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/03/030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823609", 
          "https://doi.org/10.1088/1126-6708/2006/03/030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.70.066010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023949261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.70.066010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023949261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(86)90362-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024458682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(86)90362-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024458682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2007.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025806615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.161602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027803202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.161602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027803202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.016007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029355932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.016007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029355932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/11/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029610240", 
          "https://doi.org/10.1088/1126-6708/2008/11/015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/09/062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029942980", 
          "https://doi.org/10.1088/1126-6708/2008/09/062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031658844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031658844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90277-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033411060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90277-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033411060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/04/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045078250", 
          "https://doi.org/10.1088/1126-6708/2000/04/018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(99)00760-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047502822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/04/076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048073217", 
          "https://doi.org/10.1088/1126-6708/2008/04/076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-004-1187-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053494292", 
          "https://doi.org/10.1007/s00220-004-1187-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.2291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.13.2291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060683878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.15.996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060685044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.15.996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060685044"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincar\u00e9 algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincar\u00e9 algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep01(2010)010", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "Covariant representation theory of the Poincar\u00e9 algebra and some of its extensions", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "741d5de3bf26f194d8adcff3a00cd4d42d75aecf288e5c13402bd288d9f1a29b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep01(2010)010"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024372854"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep01(2010)010", 
      "https://app.dimensions.ai/details/publication/pub.1024372854"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP01%282010%29010"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep01(2010)010'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep01(2010)010 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbdeebbe3f3e34e298ceba5566f28e624
4 schema:citation sg:pub.10.1007/s00220-004-1187-3
5 sg:pub.10.1088/1126-6708/2000/04/018
6 sg:pub.10.1088/1126-6708/2004/09/006
7 sg:pub.10.1088/1126-6708/2004/12/049
8 sg:pub.10.1088/1126-6708/2006/03/030
9 sg:pub.10.1088/1126-6708/2008/04/049
10 sg:pub.10.1088/1126-6708/2008/04/076
11 sg:pub.10.1088/1126-6708/2008/09/062
12 sg:pub.10.1088/1126-6708/2008/11/015
13 sg:pub.10.1088/1126-6708/2009/07/075
14 https://doi.org/10.1016/0370-2693(88)91471-2
15 https://doi.org/10.1016/0550-3213(77)90277-2
16 https://doi.org/10.1016/0550-3213(79)90162-7
17 https://doi.org/10.1016/0550-3213(86)90362-7
18 https://doi.org/10.1016/j.aop.2007.04.014
19 https://doi.org/10.1016/j.nuclphysb.2005.02.030
20 https://doi.org/10.1016/j.nuclphysb.2007.09.033
21 https://doi.org/10.1016/s0370-2693(99)00760-1
22 https://doi.org/10.1103/physrevd.13.2291
23 https://doi.org/10.1103/physrevd.15.996
24 https://doi.org/10.1103/physrevd.59.016007
25 https://doi.org/10.1103/physrevd.70.066010
26 https://doi.org/10.1103/physrevd.78.085011
27 https://doi.org/10.1103/physrevlett.103.161602
28 https://doi.org/10.1103/physrevlett.94.181602
29 schema:datePublished 2010-01
30 schema:datePublishedReg 2010-01-01
31 schema:description There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N17d07c00ff504e3ea52a8c825b4ca29d
36 Nbd67b8b805864dd38ff2c287cfda1dd0
37 sg:journal.1052482
38 schema:name Covariant representation theory of the Poincaré algebra and some of its extensions
39 schema:pagination 10
40 schema:productId N1d5ed01a0f7747f78e60707c8e052ab0
41 N5c3cc835386a4c22882dfa1f731cedb1
42 Ne2f52595648f441bbc8d4ec57cdd1ff7
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024372854
44 https://doi.org/10.1007/jhep01(2010)010
45 schema:sdDatePublished 2019-04-11T09:53
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N92bac63cd88842a2823c37a061ffa9aa
48 schema:url https://link.springer.com/10.1007%2FJHEP01%282010%29010
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N17d07c00ff504e3ea52a8c825b4ca29d schema:volumeNumber 2010
53 rdf:type schema:PublicationVolume
54 N1d5ed01a0f7747f78e60707c8e052ab0 schema:name dimensions_id
55 schema:value pub.1024372854
56 rdf:type schema:PropertyValue
57 N5c3cc835386a4c22882dfa1f731cedb1 schema:name readcube_id
58 schema:value 741d5de3bf26f194d8adcff3a00cd4d42d75aecf288e5c13402bd288d9f1a29b
59 rdf:type schema:PropertyValue
60 N92bac63cd88842a2823c37a061ffa9aa schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nbd67b8b805864dd38ff2c287cfda1dd0 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Nbdeebbe3f3e34e298ceba5566f28e624 rdf:first sg:person.07517336540.25
65 rdf:rest rdf:nil
66 Ne2f52595648f441bbc8d4ec57cdd1ff7 schema:name doi
67 schema:value 10.1007/jhep01(2010)010
68 rdf:type schema:PropertyValue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1052482 schema:issn 1029-8479
76 1126-6708
77 schema:name Journal of High Energy Physics
78 rdf:type schema:Periodical
79 sg:person.07517336540.25 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
80 schema:familyName Boels
81 schema:givenName Rutger
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517336540.25
83 rdf:type schema:Person
84 sg:pub.10.1007/s00220-004-1187-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053494292
85 https://doi.org/10.1007/s00220-004-1187-3
86 rdf:type schema:CreativeWork
87 sg:pub.10.1088/1126-6708/2000/04/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045078250
88 https://doi.org/10.1088/1126-6708/2000/04/018
89 rdf:type schema:CreativeWork
90 sg:pub.10.1088/1126-6708/2004/09/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003905464
91 https://doi.org/10.1088/1126-6708/2004/09/006
92 rdf:type schema:CreativeWork
93 sg:pub.10.1088/1126-6708/2004/12/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002976197
94 https://doi.org/10.1088/1126-6708/2004/12/049
95 rdf:type schema:CreativeWork
96 sg:pub.10.1088/1126-6708/2006/03/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022823609
97 https://doi.org/10.1088/1126-6708/2006/03/030
98 rdf:type schema:CreativeWork
99 sg:pub.10.1088/1126-6708/2008/04/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006625802
100 https://doi.org/10.1088/1126-6708/2008/04/049
101 rdf:type schema:CreativeWork
102 sg:pub.10.1088/1126-6708/2008/04/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048073217
103 https://doi.org/10.1088/1126-6708/2008/04/076
104 rdf:type schema:CreativeWork
105 sg:pub.10.1088/1126-6708/2008/09/062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029942980
106 https://doi.org/10.1088/1126-6708/2008/09/062
107 rdf:type schema:CreativeWork
108 sg:pub.10.1088/1126-6708/2008/11/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029610240
109 https://doi.org/10.1088/1126-6708/2008/11/015
110 rdf:type schema:CreativeWork
111 sg:pub.10.1088/1126-6708/2009/07/075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012696655
112 https://doi.org/10.1088/1126-6708/2009/07/075
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0370-2693(88)91471-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002658323
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0550-3213(77)90277-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033411060
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0550-3213(79)90162-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022547150
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0550-3213(86)90362-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024458682
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.aop.2007.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007461366
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.nuclphysb.2005.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002295203
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.nuclphysb.2007.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025806615
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0370-2693(99)00760-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047502822
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevd.13.2291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060683878
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevd.15.996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060685044
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevd.59.016007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029355932
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevd.70.066010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023949261
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevd.78.085011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000890177
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.103.161602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027803202
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.94.181602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031658844
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
145 schema:name Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...