Analysis of electrophoretic mobility data for biological cells with a new membrane model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

T. Kondo , H. Ohshima

ABSTRACT

A new membrane model was proposed to analzye the electrophoretic mobility data of biologicall cells. The model assumes that fixed charges are uniformly distributed in a planar surface layer on the membrane lipid core and that electrolyte ions can penetrate into the layer. Based on this membrane model, an approximate analytical expression that directly relates the electrophoretic mobility of biological cells to the charge density, N, in the surface region was derived. The expression involves the Donnan potential and the surface potential in the region, both of which are a function of N and electrolyte concentration, and a parameter relating to the depth of fluid drag in the region, λ. — The best curve fitting for the experimentally obtained electrophoretic mobility values for human erythrocytes and guinea-pig polymorphonuclear leucocytes as a function of electrolyte concentration using appropriate values of N and λ gave the charge density in the surface region of both types of cells to show that the distribution of the negative charges arising from the acidic groups is fairly uniform, while the positive charges arising from the basic groups increase in the density with increasing inward distance from the boundary of the surface region and the medium. More... »

PAGES

280-283

Book

TITLE

Trends in Colloid and Interface Science VII

ISBN

978-3-7985-0955-9
978-3-7985-1676-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0118559

DOI

http://dx.doi.org/10.1007/bfb0118559

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016712020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Pharmaceutical Sciences and Institute of Colloid and Interface Science, Science University of Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Faculty of Pharmaceutical Sciences and Institute of Colloid and Interface Science, Science University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "T.", 
        "id": "sg:person.0644232363.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644232363.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Pharmaceutical Sciences and Institute of Colloid and Interface Science, Science University of Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Faculty of Pharmaceutical Sciences and Institute of Colloid and Interface Science, Science University of Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohshima", 
        "givenName": "H.", 
        "id": "sg:person.011310560407.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310560407.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "A new membrane model was proposed to analzye the electrophoretic mobility data of biologicall cells. The model assumes that fixed charges are uniformly distributed in a planar surface layer on the membrane lipid core and that electrolyte ions can penetrate into the layer. Based on this membrane model, an approximate analytical expression that directly relates the electrophoretic mobility of biological cells to the charge density, N, in the surface region was derived. The expression involves the Donnan potential and the surface potential in the region, both of which are a function of N and electrolyte concentration, and a parameter relating to the depth of fluid drag in the region, \u03bb. \u2014 The best curve fitting for the experimentally obtained electrophoretic mobility values for human erythrocytes and guinea-pig polymorphonuclear leucocytes as a function of electrolyte concentration using appropriate values of N and \u03bb gave the charge density in the surface region of both types of cells to show that the distribution of the negative charges arising from the acidic groups is fairly uniform, while the positive charges arising from the basic groups increase in the density with increasing inward distance from the boundary of the surface region and the medium.", 
    "editor": [
      {
        "familyName": "Laggner", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Glatter", 
        "givenName": "O.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0118559", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7985-0955-9", 
        "978-3-7985-1676-2"
      ], 
      "name": "Trends in Colloid and Interface Science VII", 
      "type": "Book"
    }, 
    "keywords": [
      "electrophoretic mobility data", 
      "new membrane model", 
      "membrane model", 
      "charge", 
      "surface layer", 
      "electrolyte ions", 
      "biological cells", 
      "charge density", 
      "surface region", 
      "Donnan potential", 
      "surface potential", 
      "electrolyte concentration", 
      "electrophoretic mobility values", 
      "mobility values", 
      "guinea-pig polymorphonuclear leucocytes", 
      "negative charge", 
      "acidic groups", 
      "positive charge", 
      "basic groups", 
      "model", 
      "mobility data", 
      "layer", 
      "membrane lipid core", 
      "lipid core", 
      "core", 
      "ions", 
      "approximate analytical expressions", 
      "analytical expressions", 
      "electrophoretic mobility", 
      "mobility", 
      "density", 
      "potential", 
      "concentration", 
      "fluid drag", 
      "drag", 
      "best curve", 
      "values", 
      "appropriate values", 
      "group", 
      "boundaries", 
      "medium", 
      "data", 
      "cells", 
      "region", 
      "function", 
      "parameters", 
      "depth", 
      "curves", 
      "human erythrocytes", 
      "erythrocytes", 
      "types of cells", 
      "types", 
      "distribution", 
      "distance", 
      "analysis", 
      "biologicall cells", 
      "planar surface layer", 
      "expression", 
      "polymorphonuclear leucocytes", 
      "leucocytes", 
      "inward distance"
    ], 
    "name": "Analysis of electrophoretic mobility data for biological cells with a new membrane model", 
    "pagination": "280-283", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016712020"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0118559"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0118559", 
      "https://app.dimensions.ai/details/publication/pub.1016712020"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_182.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0118559"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0118559'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0118559'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0118559'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0118559'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0118559 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author Nd3eef52180434228a4df8a061da2b2d2
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description A new membrane model was proposed to analzye the electrophoretic mobility data of biologicall cells. The model assumes that fixed charges are uniformly distributed in a planar surface layer on the membrane lipid core and that electrolyte ions can penetrate into the layer. Based on this membrane model, an approximate analytical expression that directly relates the electrophoretic mobility of biological cells to the charge density, N, in the surface region was derived. The expression involves the Donnan potential and the surface potential in the region, both of which are a function of N and electrolyte concentration, and a parameter relating to the depth of fluid drag in the region, λ. — The best curve fitting for the experimentally obtained electrophoretic mobility values for human erythrocytes and guinea-pig polymorphonuclear leucocytes as a function of electrolyte concentration using appropriate values of N and λ gave the charge density in the surface region of both types of cells to show that the distribution of the negative charges arising from the acidic groups is fairly uniform, while the positive charges arising from the basic groups increase in the density with increasing inward distance from the boundary of the surface region and the medium.
7 schema:editor N50bb055e1e0b46d48ec694978553a651
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0f008ed6e5494e2c9c075222029bde52
12 schema:keywords Donnan potential
13 acidic groups
14 analysis
15 analytical expressions
16 appropriate values
17 approximate analytical expressions
18 basic groups
19 best curve
20 biological cells
21 biologicall cells
22 boundaries
23 cells
24 charge
25 charge density
26 concentration
27 core
28 curves
29 data
30 density
31 depth
32 distance
33 distribution
34 drag
35 electrolyte concentration
36 electrolyte ions
37 electrophoretic mobility
38 electrophoretic mobility data
39 electrophoretic mobility values
40 erythrocytes
41 expression
42 fluid drag
43 function
44 group
45 guinea-pig polymorphonuclear leucocytes
46 human erythrocytes
47 inward distance
48 ions
49 layer
50 leucocytes
51 lipid core
52 medium
53 membrane lipid core
54 membrane model
55 mobility
56 mobility data
57 mobility values
58 model
59 negative charge
60 new membrane model
61 parameters
62 planar surface layer
63 polymorphonuclear leucocytes
64 positive charge
65 potential
66 region
67 surface layer
68 surface potential
69 surface region
70 types
71 types of cells
72 values
73 schema:name Analysis of electrophoretic mobility data for biological cells with a new membrane model
74 schema:pagination 280-283
75 schema:productId N4a5dd879f4e9497cb5c96da2b1ae3313
76 N6b8bb906787c406387aec7184c81ad30
77 schema:publisher Na2272bcf497b499ba5490efed6114464
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016712020
79 https://doi.org/10.1007/bfb0118559
80 schema:sdDatePublished 2021-12-01T19:59
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N92aa2199c505433f996d1b704e32c957
83 schema:url https://doi.org/10.1007/bfb0118559
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N0f008ed6e5494e2c9c075222029bde52 schema:isbn 978-3-7985-0955-9
88 978-3-7985-1676-2
89 schema:name Trends in Colloid and Interface Science VII
90 rdf:type schema:Book
91 N4a5dd879f4e9497cb5c96da2b1ae3313 schema:name dimensions_id
92 schema:value pub.1016712020
93 rdf:type schema:PropertyValue
94 N50bb055e1e0b46d48ec694978553a651 rdf:first N5a6c40d510c14851bae795e525c0eef1
95 rdf:rest N6685667cc093410da1077e8bd6230da0
96 N5a6c40d510c14851bae795e525c0eef1 schema:familyName Laggner
97 schema:givenName P.
98 rdf:type schema:Person
99 N6685667cc093410da1077e8bd6230da0 rdf:first Nb85440d967de45d4afe05514c613d8be
100 rdf:rest rdf:nil
101 N6b8bb906787c406387aec7184c81ad30 schema:name doi
102 schema:value 10.1007/bfb0118559
103 rdf:type schema:PropertyValue
104 N92aa2199c505433f996d1b704e32c957 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Na2272bcf497b499ba5490efed6114464 schema:name Springer Nature
107 rdf:type schema:Organisation
108 Nb85440d967de45d4afe05514c613d8be schema:familyName Glatter
109 schema:givenName O.
110 rdf:type schema:Person
111 Nd3eef52180434228a4df8a061da2b2d2 rdf:first sg:person.0644232363.30
112 rdf:rest Nf028584efef24509b425103cfc504f97
113 Nf028584efef24509b425103cfc504f97 rdf:first sg:person.011310560407.62
114 rdf:rest rdf:nil
115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
116 schema:name Chemical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
119 schema:name Macromolecular and Materials Chemistry
120 rdf:type schema:DefinedTerm
121 sg:person.011310560407.62 schema:affiliation grid-institutes:grid.143643.7
122 schema:familyName Ohshima
123 schema:givenName H.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310560407.62
125 rdf:type schema:Person
126 sg:person.0644232363.30 schema:affiliation grid-institutes:grid.143643.7
127 schema:familyName Kondo
128 schema:givenName T.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644232363.30
130 rdf:type schema:Person
131 grid-institutes:grid.143643.7 schema:alternateName Faculty of Pharmaceutical Sciences and Institute of Colloid and Interface Science, Science University of Tokyo, Japan
132 schema:name Faculty of Pharmaceutical Sciences and Institute of Colloid and Interface Science, Science University of Tokyo, Japan
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...