The hankel singular values of a distributed delay line a fredholm equation approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-12-02

AUTHORS

L. Pandolfi

ABSTRACT

The calculation of the Hankel singular values of a distributed delay line is reduced to the calculation of the eigenvalues of a Fredholm integral equation. In a special case we find an analytic function whose zeros are the singular values.

PAGES

543-550

References to SciGraph publications

Book

TITLE

Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems

ISBN

978-3-540-56155-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0115052

DOI

http://dx.doi.org/10.1007/bfb0115052

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037367996


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandolfi", 
        "givenName": "L.", 
        "id": "sg:person.012351424331.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351424331.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-6911(87)90097-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000105715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001503599", 
          "https://doi.org/10.1007/bf02551374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001503599", 
          "https://doi.org/10.1007/bf02551374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207178408933239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005018742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(88)90199-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021086496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6911(87)90096-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039313991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6911(90)90053-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049166674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6911(90)90053-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049166674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-70151-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051265805", 
          "https://doi.org/10.1007/978-3-642-70151-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-70151-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051265805", 
          "https://doi.org/10.1007/978-3-642-70151-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamci/2.2.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059686970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0319011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/jiea/1181075746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064429794"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12-02", 
    "datePublishedReg": "2007-12-02", 
    "description": "The calculation of the Hankel singular values of a distributed delay line is reduced to the calculation of the eigenvalues of a Fredholm integral equation. In a special case we find an analytic function whose zeros are the singular values.", 
    "editor": [
      {
        "familyName": "Curtain", 
        "givenName": "R. F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bensoussan", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Lions", 
        "givenName": "J. L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0115052", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-56155-2"
      ], 
      "name": "Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems", 
      "type": "Book"
    }, 
    "name": "The hankel singular values of a distributed delay line a fredholm equation approach", 
    "pagination": "543-550", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0115052"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b2018f38055a73af598c2936423b272534d94ec34c3c6fbe5d307e9448ec8b7f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037367996"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0115052", 
      "https://app.dimensions.ai/details/publication/pub.1037367996"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2FBFb0115052"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0115052'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0115052'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0115052'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0115052'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      22 PREDICATES      34 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0115052 schema:author N61f502c8b7404dd0bd27bd7cba0617a1
2 schema:citation sg:pub.10.1007/978-3-642-70151-1
3 sg:pub.10.1007/bf02551374
4 https://doi.org/10.1016/0024-3795(88)90199-1
5 https://doi.org/10.1016/0167-6911(87)90096-x
6 https://doi.org/10.1016/0167-6911(87)90097-1
7 https://doi.org/10.1016/0167-6911(90)90053-w
8 https://doi.org/10.1080/00207178408933239
9 https://doi.org/10.1093/imamci/2.2.171
10 https://doi.org/10.1137/0319011
11 https://doi.org/10.1216/jiea/1181075746
12 schema:datePublished 2007-12-02
13 schema:datePublishedReg 2007-12-02
14 schema:description The calculation of the Hankel singular values of a distributed delay line is reduced to the calculation of the eigenvalues of a Fredholm integral equation. In a special case we find an analytic function whose zeros are the singular values.
15 schema:editor Ne60366632ad348e9bf550be2c9d88dc2
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nee025d75ab3e4d608b1e1f011f4e0e71
20 schema:name The hankel singular values of a distributed delay line a fredholm equation approach
21 schema:pagination 543-550
22 schema:productId N9365f98cba7f4191ac8d07562e5e3b98
23 Nc6ceea40f1eb49d08ab5414799ba4394
24 Ncd5a7fa42bec46c8bb5ebc57fbbae7c3
25 schema:publisher N7b1ab1a8d5ad43819f7be14207cad9f8
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037367996
27 https://doi.org/10.1007/bfb0115052
28 schema:sdDatePublished 2019-04-16T05:42
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Ndec2c369d39e404697eac79084a0959e
31 schema:url https://link.springer.com/10.1007%2FBFb0115052
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N608d2f3589294a7bb836b94e5934a83c schema:familyName Bensoussan
36 schema:givenName A.
37 rdf:type schema:Person
38 N61f502c8b7404dd0bd27bd7cba0617a1 rdf:first sg:person.012351424331.97
39 rdf:rest rdf:nil
40 N72c76a17b71e4ceabe32b0c14c7433e3 schema:familyName Curtain
41 schema:givenName R. F.
42 rdf:type schema:Person
43 N7b1ab1a8d5ad43819f7be14207cad9f8 schema:location Berlin, Heidelberg
44 schema:name Springer Berlin Heidelberg
45 rdf:type schema:Organisation
46 N924d7d6c4bd443419c500e9702ea9294 schema:familyName Lions
47 schema:givenName J. L.
48 rdf:type schema:Person
49 N9365f98cba7f4191ac8d07562e5e3b98 schema:name readcube_id
50 schema:value b2018f38055a73af598c2936423b272534d94ec34c3c6fbe5d307e9448ec8b7f
51 rdf:type schema:PropertyValue
52 Nb2b7abda72ee4138b57702317352f17e rdf:first N924d7d6c4bd443419c500e9702ea9294
53 rdf:rest rdf:nil
54 Nc6ceea40f1eb49d08ab5414799ba4394 schema:name doi
55 schema:value 10.1007/bfb0115052
56 rdf:type schema:PropertyValue
57 Ncd5a7fa42bec46c8bb5ebc57fbbae7c3 schema:name dimensions_id
58 schema:value pub.1037367996
59 rdf:type schema:PropertyValue
60 Nddcf6740a27a40f7ba86f94236d7b19c rdf:first N608d2f3589294a7bb836b94e5934a83c
61 rdf:rest Nb2b7abda72ee4138b57702317352f17e
62 Ndec2c369d39e404697eac79084a0959e schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ne60366632ad348e9bf550be2c9d88dc2 rdf:first N72c76a17b71e4ceabe32b0c14c7433e3
65 rdf:rest Nddcf6740a27a40f7ba86f94236d7b19c
66 Nee025d75ab3e4d608b1e1f011f4e0e71 schema:isbn 978-3-540-56155-2
67 schema:name Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems
68 rdf:type schema:Book
69 sg:person.012351424331.97 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
70 schema:familyName Pandolfi
71 schema:givenName L.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351424331.97
73 rdf:type schema:Person
74 sg:pub.10.1007/978-3-642-70151-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051265805
75 https://doi.org/10.1007/978-3-642-70151-1
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02551374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001503599
78 https://doi.org/10.1007/bf02551374
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0024-3795(88)90199-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021086496
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0167-6911(87)90096-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313991
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0167-6911(87)90097-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000105715
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0167-6911(90)90053-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1049166674
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1080/00207178408933239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005018742
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1093/imamci/2.2.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059686970
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1137/0319011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843562
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1216/jiea/1181075746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064429794
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
97 schema:name Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...