Tunneling of hydrogen in metals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

Hermann Grabert , Helmut Wipf

ABSTRACT

Light particles in metals are studied for low temperatures where the nonadiabatic coupling to conduction electrons strongly affects the tunneling between adjacent interstitial sites. Special attention is given to two-level systems formed by trapped hydrogen in niobium. The basic principles governing the tunneling dynamics of such systems are explained and they are applied to determine the dynamic structure factor. The theoretical findings are compared with neutron spectroscopic measurements. These experiments demonstrate a transition from low-temperature coherent tunneling with a well-defined tunneling frequency to hopping with an incoherent tunneling rate at elevated temperatures. The agreement between theory and experiment over a large range of temperature shows the dominant effect of conduction electrons on the motion of light interstitials in metals at low temperatures. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0108279

DOI

http://dx.doi.org/10.1007/bfb0108279

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017769817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fachbereich Physik, Universit\u00e4t-GHS Essen, Universit\u00e4tsstrasse 5, D-4300, Essen, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich Physik, Universit\u00e4t-GHS Essen, Universit\u00e4tsstrasse 5, D-4300, Essen, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grabert", 
        "givenName": "Hermann", 
        "id": "sg:person.0613514005.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613514005.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstrasse 6, D-6100, Darmstadt, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstrasse 6, D-6100, Darmstadt, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wipf", 
        "givenName": "Helmut", 
        "id": "sg:person.07553115345.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "Light particles in metals are studied for low temperatures where the nonadiabatic coupling to conduction electrons strongly affects the tunneling between adjacent interstitial sites. Special attention is given to two-level systems formed by trapped hydrogen in niobium. The basic principles governing the tunneling dynamics of such systems are explained and they are applied to determine the dynamic structure factor. The theoretical findings are compared with neutron spectroscopic measurements. These experiments demonstrate a transition from low-temperature coherent tunneling with a well-defined tunneling frequency to hopping with an incoherent tunneling rate at elevated temperatures. The agreement between theory and experiment over a large range of temperature shows the dominant effect of conduction electrons on the motion of light interstitials in metals at low temperatures.", 
    "editor": [
      {
        "familyName": "R\u00f6ssler", 
        "givenName": "Ulrich", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0108279", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-528-08038-9"
      ], 
      "name": "Festk\u00f6rperprobleme 30", 
      "type": "Book"
    }, 
    "keywords": [
      "conduction electrons", 
      "dynamic structure factor", 
      "two-level system", 
      "neutron spectroscopic measurements", 
      "adjacent interstitial sites", 
      "nonadiabatic coupling", 
      "coherent tunneling", 
      "light interstitials", 
      "tunneling rate", 
      "low temperature", 
      "tunneling frequency", 
      "tunneling of hydrogen", 
      "spectroscopic measurements", 
      "structure factor", 
      "tunneling", 
      "electrons", 
      "interstitial sites", 
      "large range", 
      "hydrogen", 
      "temperature", 
      "dominant effect", 
      "coupling", 
      "metals", 
      "transition", 
      "basic principles", 
      "interstitials", 
      "light", 
      "theoretical findings", 
      "such systems", 
      "measurements", 
      "experiments", 
      "agreement", 
      "niobium", 
      "motion", 
      "dynamics", 
      "elevated temperatures", 
      "theory", 
      "special attention", 
      "frequency", 
      "range", 
      "system", 
      "principles", 
      "effect", 
      "rate", 
      "sites", 
      "attention", 
      "factors", 
      "findings"
    ], 
    "name": "Tunneling of hydrogen in metals", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017769817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0108279"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0108279", 
      "https://app.dimensions.ai/details/publication/pub.1017769817"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_41.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0108279"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0108279'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0108279'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0108279'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0108279'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      75 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0108279 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N7935cffd67254d768a239f7c606b249e
5 schema:datePublished 1990
6 schema:datePublishedReg 1990-01-01
7 schema:description Light particles in metals are studied for low temperatures where the nonadiabatic coupling to conduction electrons strongly affects the tunneling between adjacent interstitial sites. Special attention is given to two-level systems formed by trapped hydrogen in niobium. The basic principles governing the tunneling dynamics of such systems are explained and they are applied to determine the dynamic structure factor. The theoretical findings are compared with neutron spectroscopic measurements. These experiments demonstrate a transition from low-temperature coherent tunneling with a well-defined tunneling frequency to hopping with an incoherent tunneling rate at elevated temperatures. The agreement between theory and experiment over a large range of temperature shows the dominant effect of conduction electrons on the motion of light interstitials in metals at low temperatures.
8 schema:editor Ncb4fdaa62cc84c1a9881412676c321dd
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Ndf6d0a0b44db4842b29803c0d82c36d6
13 schema:keywords adjacent interstitial sites
14 agreement
15 attention
16 basic principles
17 coherent tunneling
18 conduction electrons
19 coupling
20 dominant effect
21 dynamic structure factor
22 dynamics
23 effect
24 electrons
25 elevated temperatures
26 experiments
27 factors
28 findings
29 frequency
30 hydrogen
31 interstitial sites
32 interstitials
33 large range
34 light
35 light interstitials
36 low temperature
37 measurements
38 metals
39 motion
40 neutron spectroscopic measurements
41 niobium
42 nonadiabatic coupling
43 principles
44 range
45 rate
46 sites
47 special attention
48 spectroscopic measurements
49 structure factor
50 such systems
51 system
52 temperature
53 theoretical findings
54 theory
55 transition
56 tunneling
57 tunneling frequency
58 tunneling of hydrogen
59 tunneling rate
60 two-level system
61 schema:name Tunneling of hydrogen in metals
62 schema:pagination 1-23
63 schema:productId N67fa7d7b4b7444c88b9d3ce0732dbd0c
64 Nc40b6069e93a4fc680568a0df84d3ae8
65 schema:publisher N995ae7f99207428cb7bb514148fd87fe
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017769817
67 https://doi.org/10.1007/bfb0108279
68 schema:sdDatePublished 2022-05-20T07:47
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Ndf2de179882f4e2fb423ee577f193c7e
71 schema:url https://doi.org/10.1007/bfb0108279
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N15fc4b5c3eb44343a29fec99167883dc rdf:first sg:person.07553115345.63
76 rdf:rest rdf:nil
77 N67fa7d7b4b7444c88b9d3ce0732dbd0c schema:name doi
78 schema:value 10.1007/bfb0108279
79 rdf:type schema:PropertyValue
80 N7935cffd67254d768a239f7c606b249e rdf:first sg:person.0613514005.68
81 rdf:rest N15fc4b5c3eb44343a29fec99167883dc
82 N995ae7f99207428cb7bb514148fd87fe schema:name Springer Nature
83 rdf:type schema:Organisation
84 Nc40b6069e93a4fc680568a0df84d3ae8 schema:name dimensions_id
85 schema:value pub.1017769817
86 rdf:type schema:PropertyValue
87 Nca1f7118376d4d06a0cc1a2a76105b55 schema:familyName Rössler
88 schema:givenName Ulrich
89 rdf:type schema:Person
90 Ncb4fdaa62cc84c1a9881412676c321dd rdf:first Nca1f7118376d4d06a0cc1a2a76105b55
91 rdf:rest rdf:nil
92 Ndf2de179882f4e2fb423ee577f193c7e schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ndf6d0a0b44db4842b29803c0d82c36d6 schema:isbn 978-3-528-08038-9
95 schema:name Festkörperprobleme 30
96 rdf:type schema:Book
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
101 schema:name Condensed Matter Physics
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
104 schema:name Quantum Physics
105 rdf:type schema:DefinedTerm
106 sg:person.0613514005.68 schema:affiliation grid-institutes:grid.5718.b
107 schema:familyName Grabert
108 schema:givenName Hermann
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613514005.68
110 rdf:type schema:Person
111 sg:person.07553115345.63 schema:affiliation grid-institutes:grid.6546.1
112 schema:familyName Wipf
113 schema:givenName Helmut
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63
115 rdf:type schema:Person
116 grid-institutes:grid.5718.b schema:alternateName Fachbereich Physik, Universität-GHS Essen, Universitätsstrasse 5, D-4300, Essen, Federal Republic of Germany
117 schema:name Fachbereich Physik, Universität-GHS Essen, Universitätsstrasse 5, D-4300, Essen, Federal Republic of Germany
118 rdf:type schema:Organization
119 grid-institutes:grid.6546.1 schema:alternateName Institut für Festkörperphysik, Technische Hochschule Darmstadt, Hochschulstrasse 6, D-6100, Darmstadt, Federal Republic of Germany
120 schema:name Institut für Festkörperphysik, Technische Hochschule Darmstadt, Hochschulstrasse 6, D-6100, Darmstadt, Federal Republic of Germany
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...