Completely uniformly distributed sequences of matrices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

M. Drmota , R. F. Tichy , R. Winkler

ABSTRACT

It is proved that for almost all s × s-matrices A with largest eigenvalue λ(A)>1 the sequence of powers (A p(n)) n=1 ∞ is completely uniformly distributed modulo 1, where p(n) are different positive integers. Furthermore a constructive example for a matrix A is given such that the sequence (A n) n=1 ∞ is completely uniformly distributed. More... »

PAGES

43-57

References to SciGraph publications

Book

TITLE

Number-Theoretic Analysis

ISBN

978-3-540-53408-2
978-3-540-46864-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0096980

DOI

http://dx.doi.org/10.1007/bfb0096980

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051748876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Discrete Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drmota", 
        "givenName": "M.", 
        "id": "sg:person.011120311545.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011120311545.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Technical Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tichy", 
        "givenName": "R. F.", 
        "id": "sg:person.015312676677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Algebra, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winkler", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02392334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027358298", 
          "https://doi.org/10.1007/bf02392334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579300010810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062056207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa-48-2-197-207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092029421"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "It is proved that for almost all s \u00d7 s-matrices A with largest eigenvalue \u03bb(A)>1 the sequence of powers (A p(n)) n=1 \u221e is completely uniformly distributed modulo 1, where p(n) are different positive integers. Furthermore a constructive example for a matrix A is given such that the sequence (A n) n=1 \u221e is completely uniformly distributed.", 
    "editor": [
      {
        "familyName": "Hlawka", 
        "givenName": "Edmund", 
        "type": "Person"
      }, 
      {
        "familyName": "Tichy", 
        "givenName": "Robert F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0096980", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-53408-2", 
        "978-3-540-46864-6"
      ], 
      "name": "Number-Theoretic Analysis", 
      "type": "Book"
    }, 
    "name": "Completely uniformly distributed sequences of matrices", 
    "pagination": "43-57", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0096980"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f681091bf9dbd50feb9dd799276cfe01d68849e2a4876f42b84d8a9c37fdaac6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051748876"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0096980", 
      "https://app.dimensions.ai/details/publication/pub.1051748876"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0096980"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0096980'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0096980'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0096980'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0096980'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0096980 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N4a4d58412aa4492095e609b6eead9705
4 schema:citation sg:pub.10.1007/bf02392334
5 https://doi.org/10.1112/s0025579300010810
6 https://doi.org/10.4064/aa-48-2-197-207
7 schema:datePublished 1990
8 schema:datePublishedReg 1990-01-01
9 schema:description It is proved that for almost all s × s-matrices A with largest eigenvalue λ(A)>1 the sequence of powers (A p(n)) n=1 ∞ is completely uniformly distributed modulo 1, where p(n) are different positive integers. Furthermore a constructive example for a matrix A is given such that the sequence (A n) n=1 ∞ is completely uniformly distributed.
10 schema:editor N4df836ba3ad64458a46f18ea88513351
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N3fe24abbfb7f48e084c98e34331dc8b3
15 schema:name Completely uniformly distributed sequences of matrices
16 schema:pagination 43-57
17 schema:productId N6634a897c694460bb2ddadecf71b97fb
18 N76fffbb9d3fd400ea07338462ad0a4a4
19 Ndb90e9e9dbff410fa372364974f95800
20 schema:publisher Nc64283a7079e4834ab79e97143006de0
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051748876
22 https://doi.org/10.1007/bfb0096980
23 schema:sdDatePublished 2019-04-15T21:05
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N519a79ad78be4a388909376256c7077e
26 schema:url http://link.springer.com/10.1007/BFb0096980
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N0dd42af21d3e42eb90a05ade0489706e rdf:first sg:person.015312676677.43
31 rdf:rest N83692f0fcd2e4298888a7eabd05770cc
32 N1e0b08b17b334dad9760517edcab7f17 schema:familyName Tichy
33 schema:givenName Robert F.
34 rdf:type schema:Person
35 N21d11dc348a943c9887caedebd47ef27 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
36 schema:familyName Winkler
37 schema:givenName R.
38 rdf:type schema:Person
39 N3fe24abbfb7f48e084c98e34331dc8b3 schema:isbn 978-3-540-46864-6
40 978-3-540-53408-2
41 schema:name Number-Theoretic Analysis
42 rdf:type schema:Book
43 N49527efb91e540c5b00f97bbde0299fc schema:familyName Hlawka
44 schema:givenName Edmund
45 rdf:type schema:Person
46 N4a4d58412aa4492095e609b6eead9705 rdf:first sg:person.011120311545.44
47 rdf:rest N0dd42af21d3e42eb90a05ade0489706e
48 N4df836ba3ad64458a46f18ea88513351 rdf:first N49527efb91e540c5b00f97bbde0299fc
49 rdf:rest Nee93dfaaa5c540c9883fe145f598e0e3
50 N519a79ad78be4a388909376256c7077e schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N6634a897c694460bb2ddadecf71b97fb schema:name doi
53 schema:value 10.1007/bfb0096980
54 rdf:type schema:PropertyValue
55 N76fffbb9d3fd400ea07338462ad0a4a4 schema:name readcube_id
56 schema:value f681091bf9dbd50feb9dd799276cfe01d68849e2a4876f42b84d8a9c37fdaac6
57 rdf:type schema:PropertyValue
58 N83692f0fcd2e4298888a7eabd05770cc rdf:first N21d11dc348a943c9887caedebd47ef27
59 rdf:rest rdf:nil
60 Nc64283a7079e4834ab79e97143006de0 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 Ndb90e9e9dbff410fa372364974f95800 schema:name dimensions_id
64 schema:value pub.1051748876
65 rdf:type schema:PropertyValue
66 Nee93dfaaa5c540c9883fe145f598e0e3 rdf:first N1e0b08b17b334dad9760517edcab7f17
67 rdf:rest rdf:nil
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
72 schema:name Computation Theory and Mathematics
73 rdf:type schema:DefinedTerm
74 sg:person.011120311545.44 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
75 schema:familyName Drmota
76 schema:givenName M.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011120311545.44
78 rdf:type schema:Person
79 sg:person.015312676677.43 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
80 schema:familyName Tichy
81 schema:givenName R. F.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
83 rdf:type schema:Person
84 sg:pub.10.1007/bf02392334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027358298
85 https://doi.org/10.1007/bf02392334
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1112/s0025579300010810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062056207
88 rdf:type schema:CreativeWork
89 https://doi.org/10.4064/aa-48-2-197-207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092029421
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
92 schema:name Department of Algebra, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
93 Department of Discrete Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
94 Department of Technical Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...