Knowledge-based formulation of dynamic decision models View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1998

AUTHORS

Chenggang Wang , Tze-Yun Leong

ABSTRACT

We present a new methodology to automate decision making over time and uncertainty. We adopt a knowledge-based model construction approach to support automated and interactive formulation of dynamic decision models, i.e., models that explicitly consider the effects of time. Our work integrates and extends different features of the existing frameworks. We incorporate a hybrid knowledge representation scheme that integrates categorical knowledge, probabilistic knowledge, and deterministic knowledge. We provide a set of knowledge-based modification operations for automatic and interactive generation, abstraction, and refinement of the model components. We have built a knowledge base in a real-world domain and shown that it can support automated construction of a reasonable dynamic decision model. The results indicate the practical promise of the proposed design. More... »

PAGES

506-517

Book

TITLE

PRICAI’98: Topics in Artificial Intelligence

ISBN

978-3-540-65271-7
978-3-540-49461-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0095296

DOI

http://dx.doi.org/10.1007/bfb0095296

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025596297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Medical Computing Laboratory, School of Computing, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chenggang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Medical Computing Laboratory, School of Computing, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leong", 
        "givenName": "Tze-Yun", 
        "id": "sg:person.01304614750.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304614750.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0269888900006147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014013486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-203-8.50040-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020178594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-332-5.50077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033959134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8640.1992.tb00382.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048015890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8640.1992.tb00382.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048015890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.52548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.36.4.589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729937"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "We present a new methodology to automate decision making over time and uncertainty. We adopt a knowledge-based model construction approach to support automated and interactive formulation of dynamic decision models, i.e., models that explicitly consider the effects of time. Our work integrates and extends different features of the existing frameworks. We incorporate a hybrid knowledge representation scheme that integrates categorical knowledge, probabilistic knowledge, and deterministic knowledge. We provide a set of knowledge-based modification operations for automatic and interactive generation, abstraction, and refinement of the model components. We have built a knowledge base in a real-world domain and shown that it can support automated construction of a reasonable dynamic decision model. The results indicate the practical promise of the proposed design.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Hing-Yan", 
        "type": "Person"
      }, 
      {
        "familyName": "Motoda", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0095296", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-65271-7", 
        "978-3-540-49461-4"
      ], 
      "name": "PRICAI\u201998: Topics in Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Knowledge-based formulation of dynamic decision models", 
    "pagination": "506-517", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0095296"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79f16ea860cff8d2a3acb5fd7de5a56a2a0fbc7a38e362f169c4d5cec1af776c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025596297"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0095296", 
      "https://app.dimensions.ai/details/publication/pub.1025596297"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000259.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0095296"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0095296 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nce532814aed6427da97526433392e391
4 schema:citation https://doi.org/10.1016/b978-1-55860-203-8.50040-1
5 https://doi.org/10.1016/b978-1-55860-332-5.50077-8
6 https://doi.org/10.1017/s0269888900006147
7 https://doi.org/10.1109/21.52548
8 https://doi.org/10.1111/j.1467-8640.1992.tb00382.x
9 https://doi.org/10.1287/opre.36.4.589
10 schema:datePublished 1998
11 schema:datePublishedReg 1998-01-01
12 schema:description We present a new methodology to automate decision making over time and uncertainty. We adopt a knowledge-based model construction approach to support automated and interactive formulation of dynamic decision models, i.e., models that explicitly consider the effects of time. Our work integrates and extends different features of the existing frameworks. We incorporate a hybrid knowledge representation scheme that integrates categorical knowledge, probabilistic knowledge, and deterministic knowledge. We provide a set of knowledge-based modification operations for automatic and interactive generation, abstraction, and refinement of the model components. We have built a knowledge base in a real-world domain and shown that it can support automated construction of a reasonable dynamic decision model. The results indicate the practical promise of the proposed design.
13 schema:editor N27b7950227fb48b590d2aa4f6fd85ff3
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Nb4d06bdc432d427ca561fb2a9e4bfaa6
18 schema:name Knowledge-based formulation of dynamic decision models
19 schema:pagination 506-517
20 schema:productId N30a16d649a4743a591f641d3b4eea896
21 N375249f385124346a44ee894001d94ad
22 Ndebc965468cd4586b2cce307cb1962ad
23 schema:publisher N5506aa3daa58478f9185c515e292a293
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025596297
25 https://doi.org/10.1007/bfb0095296
26 schema:sdDatePublished 2019-04-15T10:34
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N1264541c9b24488a8589c8eb5fc22b7b
29 schema:url http://link.springer.com/10.1007/BFb0095296
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N046efea2bda6482e8e36a24494f94838 rdf:first sg:person.01304614750.43
34 rdf:rest rdf:nil
35 N1264541c9b24488a8589c8eb5fc22b7b schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N27b7950227fb48b590d2aa4f6fd85ff3 rdf:first N616ba84bc73e4080b86920fc10e3d133
38 rdf:rest N90f2f71b9d3e4b55a1515101c4f53ea0
39 N2f31a4c735d04e0983833bccd89bcc72 schema:familyName Motoda
40 schema:givenName Hiroshi
41 rdf:type schema:Person
42 N30a16d649a4743a591f641d3b4eea896 schema:name dimensions_id
43 schema:value pub.1025596297
44 rdf:type schema:PropertyValue
45 N375249f385124346a44ee894001d94ad schema:name readcube_id
46 schema:value 79f16ea860cff8d2a3acb5fd7de5a56a2a0fbc7a38e362f169c4d5cec1af776c
47 rdf:type schema:PropertyValue
48 N5506aa3daa58478f9185c515e292a293 schema:location Berlin, Heidelberg
49 schema:name Springer Berlin Heidelberg
50 rdf:type schema:Organisation
51 N616ba84bc73e4080b86920fc10e3d133 schema:familyName Lee
52 schema:givenName Hing-Yan
53 rdf:type schema:Person
54 N90f2f71b9d3e4b55a1515101c4f53ea0 rdf:first N2f31a4c735d04e0983833bccd89bcc72
55 rdf:rest rdf:nil
56 Nb2180a43057b48a0a3b752d120fb222d schema:affiliation https://www.grid.ac/institutes/grid.4280.e
57 schema:familyName Wang
58 schema:givenName Chenggang
59 rdf:type schema:Person
60 Nb4d06bdc432d427ca561fb2a9e4bfaa6 schema:isbn 978-3-540-49461-4
61 978-3-540-65271-7
62 schema:name PRICAI’98: Topics in Artificial Intelligence
63 rdf:type schema:Book
64 Nce532814aed6427da97526433392e391 rdf:first Nb2180a43057b48a0a3b752d120fb222d
65 rdf:rest N046efea2bda6482e8e36a24494f94838
66 Ndebc965468cd4586b2cce307cb1962ad schema:name doi
67 schema:value 10.1007/bfb0095296
68 rdf:type schema:PropertyValue
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.01304614750.43 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
76 schema:familyName Leong
77 schema:givenName Tze-Yun
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304614750.43
79 rdf:type schema:Person
80 https://doi.org/10.1016/b978-1-55860-203-8.50040-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020178594
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/b978-1-55860-332-5.50077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033959134
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1017/s0269888900006147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014013486
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/21.52548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122306
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1111/j.1467-8640.1992.tb00382.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048015890
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1287/opre.36.4.589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729937
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
93 schema:name Medical Computing Laboratory, School of Computing, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...