Knowledge-based formulation of dynamic decision models View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1998

AUTHORS

Chenggang Wang , Tze-Yun Leong

ABSTRACT

We present a new methodology to automate decision making over time and uncertainty. We adopt a knowledge-based model construction approach to support automated and interactive formulation of dynamic decision models, i.e., models that explicitly consider the effects of time. Our work integrates and extends different features of the existing frameworks. We incorporate a hybrid knowledge representation scheme that integrates categorical knowledge, probabilistic knowledge, and deterministic knowledge. We provide a set of knowledge-based modification operations for automatic and interactive generation, abstraction, and refinement of the model components. We have built a knowledge base in a real-world domain and shown that it can support automated construction of a reasonable dynamic decision model. The results indicate the practical promise of the proposed design. More... »

PAGES

506-517

Book

TITLE

PRICAI’98: Topics in Artificial Intelligence

ISBN

978-3-540-65271-7
978-3-540-49461-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0095296

DOI

http://dx.doi.org/10.1007/bfb0095296

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025596297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Medical Computing Laboratory, School of Computing, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chenggang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Medical Computing Laboratory, School of Computing, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leong", 
        "givenName": "Tze-Yun", 
        "id": "sg:person.01304614750.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304614750.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0269888900006147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014013486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-203-8.50040-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020178594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-332-5.50077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033959134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8640.1992.tb00382.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048015890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8640.1992.tb00382.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048015890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.52548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.36.4.589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729937"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "We present a new methodology to automate decision making over time and uncertainty. We adopt a knowledge-based model construction approach to support automated and interactive formulation of dynamic decision models, i.e., models that explicitly consider the effects of time. Our work integrates and extends different features of the existing frameworks. We incorporate a hybrid knowledge representation scheme that integrates categorical knowledge, probabilistic knowledge, and deterministic knowledge. We provide a set of knowledge-based modification operations for automatic and interactive generation, abstraction, and refinement of the model components. We have built a knowledge base in a real-world domain and shown that it can support automated construction of a reasonable dynamic decision model. The results indicate the practical promise of the proposed design.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Hing-Yan", 
        "type": "Person"
      }, 
      {
        "familyName": "Motoda", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0095296", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-65271-7", 
        "978-3-540-49461-4"
      ], 
      "name": "PRICAI\u201998: Topics in Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Knowledge-based formulation of dynamic decision models", 
    "pagination": "506-517", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0095296"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79f16ea860cff8d2a3acb5fd7de5a56a2a0fbc7a38e362f169c4d5cec1af776c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025596297"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0095296", 
      "https://app.dimensions.ai/details/publication/pub.1025596297"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000259.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0095296"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0095296'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0095296 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N308f01323f8d40029d344a011615579c
4 schema:citation https://doi.org/10.1016/b978-1-55860-203-8.50040-1
5 https://doi.org/10.1016/b978-1-55860-332-5.50077-8
6 https://doi.org/10.1017/s0269888900006147
7 https://doi.org/10.1109/21.52548
8 https://doi.org/10.1111/j.1467-8640.1992.tb00382.x
9 https://doi.org/10.1287/opre.36.4.589
10 schema:datePublished 1998
11 schema:datePublishedReg 1998-01-01
12 schema:description We present a new methodology to automate decision making over time and uncertainty. We adopt a knowledge-based model construction approach to support automated and interactive formulation of dynamic decision models, i.e., models that explicitly consider the effects of time. Our work integrates and extends different features of the existing frameworks. We incorporate a hybrid knowledge representation scheme that integrates categorical knowledge, probabilistic knowledge, and deterministic knowledge. We provide a set of knowledge-based modification operations for automatic and interactive generation, abstraction, and refinement of the model components. We have built a knowledge base in a real-world domain and shown that it can support automated construction of a reasonable dynamic decision model. The results indicate the practical promise of the proposed design.
13 schema:editor Nb6b0edad4e324cc6a874020674c388f3
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N3748a79cb4494f07b786f79a954338eb
18 schema:name Knowledge-based formulation of dynamic decision models
19 schema:pagination 506-517
20 schema:productId N34313dca07974a9ab77d42d587ac07ec
21 N362763fc0d2648b390aacd228dd00888
22 N3a3beef6a7d04642975286c57c3b52f2
23 schema:publisher N0938c353f31044d2a74391427798835e
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025596297
25 https://doi.org/10.1007/bfb0095296
26 schema:sdDatePublished 2019-04-15T10:34
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nb3620bdc10744acf85c4c5b5d32cd93c
29 schema:url http://link.springer.com/10.1007/BFb0095296
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N0510583048854825a07786ebc1770eb5 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
34 schema:familyName Wang
35 schema:givenName Chenggang
36 rdf:type schema:Person
37 N0938c353f31044d2a74391427798835e schema:location Berlin, Heidelberg
38 schema:name Springer Berlin Heidelberg
39 rdf:type schema:Organisation
40 N308f01323f8d40029d344a011615579c rdf:first N0510583048854825a07786ebc1770eb5
41 rdf:rest Nad0a337bede14155915366e25d8df13b
42 N34313dca07974a9ab77d42d587ac07ec schema:name doi
43 schema:value 10.1007/bfb0095296
44 rdf:type schema:PropertyValue
45 N362763fc0d2648b390aacd228dd00888 schema:name dimensions_id
46 schema:value pub.1025596297
47 rdf:type schema:PropertyValue
48 N3748a79cb4494f07b786f79a954338eb schema:isbn 978-3-540-49461-4
49 978-3-540-65271-7
50 schema:name PRICAI’98: Topics in Artificial Intelligence
51 rdf:type schema:Book
52 N3a3beef6a7d04642975286c57c3b52f2 schema:name readcube_id
53 schema:value 79f16ea860cff8d2a3acb5fd7de5a56a2a0fbc7a38e362f169c4d5cec1af776c
54 rdf:type schema:PropertyValue
55 Nad0a337bede14155915366e25d8df13b rdf:first sg:person.01304614750.43
56 rdf:rest rdf:nil
57 Nb3620bdc10744acf85c4c5b5d32cd93c schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb6b0edad4e324cc6a874020674c388f3 rdf:first Nb7453b9adc164c44a324ad82cdd30f9c
60 rdf:rest Nc4f9b7a200f440fca2312fc6359407ce
61 Nb7453b9adc164c44a324ad82cdd30f9c schema:familyName Lee
62 schema:givenName Hing-Yan
63 rdf:type schema:Person
64 Nc4f9b7a200f440fca2312fc6359407ce rdf:first Nf53428f2aafa45d8bfc2dc1fb19c21d4
65 rdf:rest rdf:nil
66 Nf53428f2aafa45d8bfc2dc1fb19c21d4 schema:familyName Motoda
67 schema:givenName Hiroshi
68 rdf:type schema:Person
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.01304614750.43 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
76 schema:familyName Leong
77 schema:givenName Tze-Yun
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304614750.43
79 rdf:type schema:Person
80 https://doi.org/10.1016/b978-1-55860-203-8.50040-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020178594
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/b978-1-55860-332-5.50077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033959134
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1017/s0269888900006147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014013486
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/21.52548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122306
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1111/j.1467-8640.1992.tb00382.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048015890
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1287/opre.36.4.589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729937
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
93 schema:name Medical Computing Laboratory, School of Computing, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...