Concurrent discretization of multiple attributes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1998

AUTHORS

Ke Wang , Bing Liu

ABSTRACT

Better decision trees can be learnt by merging continuous values into intervals. Merging of values, however, could introduce inconsistencies to the data, or information loss. When it is desired to maintain a certain consistency, interval mergings in one attribute could disable those in another attribute. This interaction raises the issue of determining the order of mergings. We consider a globally greedy heuristic that selects the “best” merging from all continuous attributes at each step. We present an implementation of the heuristic in which the best merging is determined in a time independent of the number of possible mergings. Experiments show that intervals produced by the heuristic lead to improved decision trees. More... »

PAGES

250-259

Book

TITLE

PRICAI’98: Topics in Artificial Intelligence

ISBN

978-3-540-65271-7
978-3-540-49461-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0095274

DOI

http://dx.doi.org/10.1007/bfb0095274

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002863066


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "School of Computing Science, National University of Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "School of Computing Science, National University of Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Bing", 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Better decision trees can be learnt by merging continuous values into intervals. Merging of values, however, could introduce inconsistencies to the data, or information loss. When it is desired to maintain a certain consistency, interval mergings in one attribute could disable those in another attribute. This interaction raises the issue of determining the order of mergings. We consider a globally greedy heuristic that selects the \u201cbest\u201d merging from all continuous attributes at each step. We present an implementation of the heuristic in which the best merging is determined in a time independent of the number of possible mergings. Experiments show that intervals produced by the heuristic lead to improved decision trees.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Hing-Yan", 
        "type": "Person"
      }, 
      {
        "familyName": "Motoda", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0095274", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-65271-7", 
        "978-3-540-49461-4"
      ], 
      "name": "PRICAI\u201998: Topics in Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Concurrent discretization of multiple attributes", 
    "pagination": "250-259", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0095274"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0da27097df836151249a18779a45a169c16bd8c94cb5ae90f379ba69817e8d74"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002863066"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0095274", 
      "https://app.dimensions.ai/details/publication/pub.1002863066"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000004.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0095274"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0095274'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0095274'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0095274'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0095274'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0095274 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N7449d60e0766481d93c64df701ab64e4
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description Better decision trees can be learnt by merging continuous values into intervals. Merging of values, however, could introduce inconsistencies to the data, or information loss. When it is desired to maintain a certain consistency, interval mergings in one attribute could disable those in another attribute. This interaction raises the issue of determining the order of mergings. We consider a globally greedy heuristic that selects the “best” merging from all continuous attributes at each step. We present an implementation of the heuristic in which the best merging is determined in a time independent of the number of possible mergings. Experiments show that intervals produced by the heuristic lead to improved decision trees.
7 schema:editor N117cd507aef1468b9983a1f4e9ad9f91
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N1250116df39f44b6ac5e3c9bcb80d702
12 schema:name Concurrent discretization of multiple attributes
13 schema:pagination 250-259
14 schema:productId N1b0c69b255b945e28cc5591f08ecd856
15 N4787dcdacae04f12a873094e784d90de
16 Ne644e39813384caf9a7f735604ce829a
17 schema:publisher N11eba79d92f9442a8cd9b746f7db60a4
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002863066
19 https://doi.org/10.1007/bfb0095274
20 schema:sdDatePublished 2019-04-15T18:53
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N51a10da81b454c3fb3ac4880120c1e36
23 schema:url http://link.springer.com/10.1007/BFb0095274
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0e8b54d454614d1d97acc7422124a099 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
28 schema:familyName Liu
29 schema:givenName Bing
30 rdf:type schema:Person
31 N117cd507aef1468b9983a1f4e9ad9f91 rdf:first Nb380367ef9494b29bd418cfc64ee1dae
32 rdf:rest Na5a37425ecd44188b0f74a76e2cb03b6
33 N11eba79d92f9442a8cd9b746f7db60a4 schema:location Berlin, Heidelberg
34 schema:name Springer Berlin Heidelberg
35 rdf:type schema:Organisation
36 N1250116df39f44b6ac5e3c9bcb80d702 schema:isbn 978-3-540-49461-4
37 978-3-540-65271-7
38 schema:name PRICAI’98: Topics in Artificial Intelligence
39 rdf:type schema:Book
40 N1b0c69b255b945e28cc5591f08ecd856 schema:name doi
41 schema:value 10.1007/bfb0095274
42 rdf:type schema:PropertyValue
43 N4787dcdacae04f12a873094e784d90de schema:name dimensions_id
44 schema:value pub.1002863066
45 rdf:type schema:PropertyValue
46 N51a10da81b454c3fb3ac4880120c1e36 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N7449d60e0766481d93c64df701ab64e4 rdf:first Nc69f4aa8440649c99eb80847d1d11b90
49 rdf:rest N9dd2100afb9249199ca403b558359760
50 N9dd2100afb9249199ca403b558359760 rdf:first N0e8b54d454614d1d97acc7422124a099
51 rdf:rest rdf:nil
52 Na5a37425ecd44188b0f74a76e2cb03b6 rdf:first Nc25721704fb24909bba486294cd330b7
53 rdf:rest rdf:nil
54 Nb380367ef9494b29bd418cfc64ee1dae schema:familyName Lee
55 schema:givenName Hing-Yan
56 rdf:type schema:Person
57 Nc25721704fb24909bba486294cd330b7 schema:familyName Motoda
58 schema:givenName Hiroshi
59 rdf:type schema:Person
60 Nc69f4aa8440649c99eb80847d1d11b90 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
61 schema:familyName Wang
62 schema:givenName Ke
63 rdf:type schema:Person
64 Ne644e39813384caf9a7f735604ce829a schema:name readcube_id
65 schema:value 0da27097df836151249a18779a45a169c16bd8c94cb5ae90f379ba69817e8d74
66 rdf:type schema:PropertyValue
67 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
68 schema:name Medical and Health Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
71 schema:name Clinical Sciences
72 rdf:type schema:DefinedTerm
73 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
74 schema:name School of Computing Science, National University of Singapore, Singapore
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...