The stability of stochastic partial differential equations and applications. Theorems on supports View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

I. Gyöngy

ABSTRACT

In this paper we present a general result on the stability of stochastic evolution equations and of stochastic partial differential equations with respect to the simultaneous perturbations of the driving semimartingales and of the unbounded operators in the equations, in the topology of uniform convergence on finite time intervals in probability. Hence we obtain theorems on supports for stochastic evolution equations and stochastic partial differential equations. These results are generalizations of the Stroock-Varadhan support theorem of diffusion processes. As applications, we prove theorems on supports for the nonlinear filter in the filtering theory of diffusion processes. More... »

PAGES

91-118

Book

TITLE

Stochastic Partial Differential Equations and Applications II

ISBN

978-3-540-51510-4
978-3-540-48200-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0083939

DOI

http://dx.doi.org/10.1007/bfb0083939

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043315897


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Probability Theory and Statistics, E\u00f6tv\u00f6s University Budapest, M\u00fazeum krt. 6\u20138, 1088, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "Department of Probability Theory and Statistics, E\u00f6tv\u00f6s University Budapest, M\u00fazeum krt. 6\u20138, 1088, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gy\u00f6ngy", 
        "givenName": "I.", 
        "id": "sg:person.010043156057.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043156057.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "In this paper we present a general result on the stability of stochastic evolution equations and of stochastic partial differential equations with respect to the simultaneous perturbations of the driving semimartingales and of the unbounded operators in the equations, in the topology of uniform convergence on finite time intervals in probability. Hence we obtain theorems on supports for stochastic evolution equations and stochastic partial differential equations. These results are generalizations of the Stroock-Varadhan support theorem of diffusion processes. As applications, we prove theorems on supports for the nonlinear filter in the filtering theory of diffusion processes.", 
    "editor": [
      {
        "familyName": "Da Prato", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "familyName": "Tubaro", 
        "givenName": "Luciano", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0083939", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-51510-4", 
        "978-3-540-48200-0"
      ], 
      "name": "Stochastic Partial Differential Equations and Applications II", 
      "type": "Book"
    }, 
    "keywords": [
      "stochastic partial differential equations", 
      "partial differential equations", 
      "stochastic evolution equations", 
      "differential equations", 
      "evolution equations", 
      "Stroock\u2013Varadhan support theorem", 
      "finite time interval", 
      "unbounded operators", 
      "filtering theory", 
      "support theorem", 
      "diffusion process", 
      "nonlinear filter", 
      "uniform convergence", 
      "general results", 
      "theorem", 
      "equations", 
      "simultaneous perturbation", 
      "semimartingales", 
      "convergence", 
      "operators", 
      "generalization", 
      "perturbations", 
      "topology", 
      "time interval", 
      "theory", 
      "applications", 
      "probability", 
      "stability", 
      "filter", 
      "results", 
      "respect", 
      "process", 
      "interval", 
      "support", 
      "paper"
    ], 
    "name": "The stability of stochastic partial differential equations and applications. Theorems on supports", 
    "pagination": "91-118", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043315897"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0083939"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0083939", 
      "https://app.dimensions.ai/details/publication/pub.1043315897"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_232.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0083939"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0083939'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0083939'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0083939'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0083939'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      62 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0083939 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 anzsrc-for:0104
5 schema:author N186b77d0be4b4c878696ba0061c6fe1a
6 schema:datePublished 1989
7 schema:datePublishedReg 1989-01-01
8 schema:description In this paper we present a general result on the stability of stochastic evolution equations and of stochastic partial differential equations with respect to the simultaneous perturbations of the driving semimartingales and of the unbounded operators in the equations, in the topology of uniform convergence on finite time intervals in probability. Hence we obtain theorems on supports for stochastic evolution equations and stochastic partial differential equations. These results are generalizations of the Stroock-Varadhan support theorem of diffusion processes. As applications, we prove theorems on supports for the nonlinear filter in the filtering theory of diffusion processes.
9 schema:editor N9580134e475e42398c8b1aafcf9835b0
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf N36c379409ce5437a9ea65b7ce37047c5
13 schema:keywords Stroock–Varadhan support theorem
14 applications
15 convergence
16 differential equations
17 diffusion process
18 equations
19 evolution equations
20 filter
21 filtering theory
22 finite time interval
23 general results
24 generalization
25 interval
26 nonlinear filter
27 operators
28 paper
29 partial differential equations
30 perturbations
31 probability
32 process
33 respect
34 results
35 semimartingales
36 simultaneous perturbation
37 stability
38 stochastic evolution equations
39 stochastic partial differential equations
40 support
41 support theorem
42 theorem
43 theory
44 time interval
45 topology
46 unbounded operators
47 uniform convergence
48 schema:name The stability of stochastic partial differential equations and applications. Theorems on supports
49 schema:pagination 91-118
50 schema:productId N5702543aa76742ed8c95c453de4ae394
51 Nadfbf0f45bbd487e93dd9ea4358bd076
52 schema:publisher N535411db274a44a1bf2e43d57617fccf
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043315897
54 https://doi.org/10.1007/bfb0083939
55 schema:sdDatePublished 2022-10-01T06:54
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N30b1d9d10e584b68b1d4f2e1c11bbd78
58 schema:url https://doi.org/10.1007/bfb0083939
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N186b77d0be4b4c878696ba0061c6fe1a rdf:first sg:person.010043156057.90
63 rdf:rest rdf:nil
64 N1a560714faaf422bb7018b1c79043b5c rdf:first N3f87d501e837434583c739f9814c2276
65 rdf:rest rdf:nil
66 N30b1d9d10e584b68b1d4f2e1c11bbd78 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N36c379409ce5437a9ea65b7ce37047c5 schema:isbn 978-3-540-48200-0
69 978-3-540-51510-4
70 schema:name Stochastic Partial Differential Equations and Applications II
71 rdf:type schema:Book
72 N3f87d501e837434583c739f9814c2276 schema:familyName Tubaro
73 schema:givenName Luciano
74 rdf:type schema:Person
75 N535411db274a44a1bf2e43d57617fccf schema:name Springer Nature
76 rdf:type schema:Organisation
77 N5702543aa76742ed8c95c453de4ae394 schema:name doi
78 schema:value 10.1007/bfb0083939
79 rdf:type schema:PropertyValue
80 N9580134e475e42398c8b1aafcf9835b0 rdf:first Nc979f0b76eb8498fbacee4034e489193
81 rdf:rest N1a560714faaf422bb7018b1c79043b5c
82 Nadfbf0f45bbd487e93dd9ea4358bd076 schema:name dimensions_id
83 schema:value pub.1043315897
84 rdf:type schema:PropertyValue
85 Nc979f0b76eb8498fbacee4034e489193 schema:familyName Da Prato
86 schema:givenName Giuseppe
87 rdf:type schema:Person
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
92 schema:name Pure Mathematics
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
95 schema:name Applied Mathematics
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
98 schema:name Statistics
99 rdf:type schema:DefinedTerm
100 sg:person.010043156057.90 schema:affiliation grid-institutes:grid.5591.8
101 schema:familyName Gyöngy
102 schema:givenName I.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043156057.90
104 rdf:type schema:Person
105 grid-institutes:grid.5591.8 schema:alternateName Department of Probability Theory and Statistics, Eötvös University Budapest, Múzeum krt. 6–8, 1088, Hungary
106 schema:name Department of Probability Theory and Statistics, Eötvös University Budapest, Múzeum krt. 6–8, 1088, Hungary
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...