On the method of analytic centers for solving smooth convex programs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

F. Jarre

ABSTRACT

We give a complexity analysis concerning the global convergence of the method of analytic centers for solving generalized smooth convex programs. We prove that the analytic center of the feasible set provides a two-sided ellipsoidal approximation of this set, whose tightness, as well as the global rate of convergence of the algorithm, only depends on the number of constraints and on a relative Lipschitz constant of the Hessian matrices of the constraint functions, but not on the data of the constraint functions. This work extends the results in [5] where the solution of problems with convex quadratic constraint functions has been discussed. More... »

PAGES

69-85

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0083587

DOI

http://dx.doi.org/10.1007/bfb0083587

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048822435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik and Statistik, Am Hubland, 8700, W\u00fcrzburg, F.R.G.", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik and Statistik, Am Hubland, 8700, W\u00fcrzburg, F.R.G."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarre", 
        "givenName": "F.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "We give a complexity analysis concerning the global convergence of the method of analytic centers for solving generalized smooth convex programs. We prove that the analytic center of the feasible set provides a two-sided ellipsoidal approximation of this set, whose tightness, as well as the global rate of convergence of the algorithm, only depends on the number of constraints and on a relative Lipschitz constant of the Hessian matrices of the constraint functions, but not on the data of the constraint functions. This work extends the results in [5] where the solution of problems with convex quadratic constraint functions has been discussed.", 
    "editor": [
      {
        "familyName": "Dolecki", 
        "givenName": "Szymon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0083587", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-51970-6"
      ], 
      "name": "Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "smooth convex programs", 
      "analytic center", 
      "constraint functions", 
      "convex program", 
      "solution of problems", 
      "number of constraints", 
      "ellipsoidal approximation", 
      "global convergence", 
      "Hessian matrix", 
      "feasible set", 
      "complexity analysis", 
      "convergence", 
      "Lipschitz", 
      "approximation", 
      "set", 
      "function", 
      "algorithm", 
      "constraints", 
      "problem", 
      "solution", 
      "matrix", 
      "tightness", 
      "number", 
      "global rate", 
      "work", 
      "results", 
      "center", 
      "analysis", 
      "data", 
      "program", 
      "rate", 
      "method"
    ], 
    "name": "On the method of analytic centers for solving smooth convex programs", 
    "pagination": "69-85", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048822435"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0083587"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0083587", 
      "https://app.dimensions.ai/details/publication/pub.1048822435"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_129.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0083587"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0083587'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0083587'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0083587'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0083587'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      22 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0083587 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nc7ca301036bd46bfb1d9050fb3913358
4 schema:datePublished 1989
5 schema:datePublishedReg 1989-01-01
6 schema:description We give a complexity analysis concerning the global convergence of the method of analytic centers for solving generalized smooth convex programs. We prove that the analytic center of the feasible set provides a two-sided ellipsoidal approximation of this set, whose tightness, as well as the global rate of convergence of the algorithm, only depends on the number of constraints and on a relative Lipschitz constant of the Hessian matrices of the constraint functions, but not on the data of the constraint functions. This work extends the results in [5] where the solution of problems with convex quadratic constraint functions has been discussed.
7 schema:editor N75e182aaeebc4d0a9719710ce8b4d62d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc3460df4cf094fb5adb197a880a2e6ff
11 schema:keywords Hessian matrix
12 Lipschitz
13 algorithm
14 analysis
15 analytic center
16 approximation
17 center
18 complexity analysis
19 constraint functions
20 constraints
21 convergence
22 convex program
23 data
24 ellipsoidal approximation
25 feasible set
26 function
27 global convergence
28 global rate
29 matrix
30 method
31 number
32 number of constraints
33 problem
34 program
35 rate
36 results
37 set
38 smooth convex programs
39 solution
40 solution of problems
41 tightness
42 work
43 schema:name On the method of analytic centers for solving smooth convex programs
44 schema:pagination 69-85
45 schema:productId N7a0375130153485998734c3544cb8904
46 Ne8b7b90b88fa487c9a0ba771aa439706
47 schema:publisher N89973ec904ad47d29e7c15c6ee0e4528
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048822435
49 https://doi.org/10.1007/bfb0083587
50 schema:sdDatePublished 2022-08-04T17:14
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nca4476c1bda54fc2856bc3112b383f9b
53 schema:url https://doi.org/10.1007/bfb0083587
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N42e592f2db904caca0da024a5dc97a18 schema:affiliation grid-institutes:None
58 schema:familyName Jarre
59 schema:givenName F.
60 rdf:type schema:Person
61 N75199e3e7be744d491164b4ac2485252 schema:familyName Dolecki
62 schema:givenName Szymon
63 rdf:type schema:Person
64 N75e182aaeebc4d0a9719710ce8b4d62d rdf:first N75199e3e7be744d491164b4ac2485252
65 rdf:rest rdf:nil
66 N7a0375130153485998734c3544cb8904 schema:name dimensions_id
67 schema:value pub.1048822435
68 rdf:type schema:PropertyValue
69 N89973ec904ad47d29e7c15c6ee0e4528 schema:name Springer Nature
70 rdf:type schema:Organisation
71 Nc3460df4cf094fb5adb197a880a2e6ff schema:isbn 978-3-540-51970-6
72 schema:name Optimization
73 rdf:type schema:Book
74 Nc7ca301036bd46bfb1d9050fb3913358 rdf:first N42e592f2db904caca0da024a5dc97a18
75 rdf:rest rdf:nil
76 Nca4476c1bda54fc2856bc3112b383f9b schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Ne8b7b90b88fa487c9a0ba771aa439706 schema:name doi
79 schema:value 10.1007/bfb0083587
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
85 schema:name Numerical and Computational Mathematics
86 rdf:type schema:DefinedTerm
87 grid-institutes:None schema:alternateName Institut für Angewandte Mathematik and Statistik, Am Hubland, 8700, Würzburg, F.R.G.
88 schema:name Institut für Angewandte Mathematik and Statistik, Am Hubland, 8700, Würzburg, F.R.G.
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...