Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

R L Hudson , J M Lindsay

ABSTRACT

After reviewing theories of stochastic integration against Fock and non-Fock quantum Brownian motion, we prove a martingale representation theorem for the latter, extending the main result of [12] by incorporating an initial space. We construct unitary processes adapted to the filtration of non-Fock quantum Brownian motion and use the martingale representation theorem to characterise such processes in terms of covariantly adapted unitary evolutions [9] with a continuity property. The classical limits of the quantum dynamical semigroups associated with these processes are contrasted with those arising in the Fock case. More... »

PAGES

276-305

Book

TITLE

Quantum Probability and Applications II

ISBN

978-3-540-15661-1
978-3-540-39570-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0074480

DOI

http://dx.doi.org/10.1007/bfb0074480

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013871088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematics Department, Nottingham University, NG7 2RD, Nottingham, England", 
          "id": "http://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Mathematics Department, Nottingham University, NG7 2RD, Nottingham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hudson", 
        "givenName": "R L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics, Bristol University, BS8 1TN, Bristol, England", 
          "id": "http://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "School of Mathematics, Bristol University, BS8 1TN, Bristol, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindsay", 
        "givenName": "J M", 
        "type": "Person"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "After reviewing theories of stochastic integration against Fock and non-Fock quantum Brownian motion, we prove a martingale representation theorem for the latter, extending the main result of [12] by incorporating an initial space. We construct unitary processes adapted to the filtration of non-Fock quantum Brownian motion and use the martingale representation theorem to characterise such processes in terms of covariantly adapted unitary evolutions [9] with a continuity property. The classical limits of the quantum dynamical semigroups associated with these processes are contrasted with those arising in the Fock case.", 
    "editor": [
      {
        "familyName": "Accardi", 
        "givenName": "Luigi", 
        "type": "Person"
      }, 
      {
        "familyName": "von Waldenfels", 
        "givenName": "Wilhelm", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0074480", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-15661-1", 
        "978-3-540-39570-6"
      ], 
      "name": "Quantum Probability and Applications II", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum Brownian motion", 
      "quantum dynamical semigroups", 
      "Fock case", 
      "classical limit", 
      "unitary evolution", 
      "dynamical semigroups", 
      "Brownian motion", 
      "unitary process", 
      "Fock", 
      "motion", 
      "such processes", 
      "stochastic integration", 
      "limit", 
      "theory", 
      "properties", 
      "evolution", 
      "process", 
      "space", 
      "theorem", 
      "martingale representation theorem", 
      "main results", 
      "terms", 
      "results", 
      "initial space", 
      "integration", 
      "cases", 
      "representation theorem", 
      "continuity properties", 
      "semigroups", 
      "uses", 
      "filtration", 
      "non-Fock quantum Brownian motion", 
      "quantum martingale representation theorem"
    ], 
    "name": "Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem", 
    "pagination": "276-305", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013871088"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0074480"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0074480", 
      "https://app.dimensions.ai/details/publication/pub.1013871088"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_197.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0074480"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      23 PREDICATES      58 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0074480 schema:about anzsrc-for:01
2 schema:author N70ffe26c0fa348e2bedad2afae92320d
3 schema:datePublished 1985
4 schema:datePublishedReg 1985-01-01
5 schema:description After reviewing theories of stochastic integration against Fock and non-Fock quantum Brownian motion, we prove a martingale representation theorem for the latter, extending the main result of [12] by incorporating an initial space. We construct unitary processes adapted to the filtration of non-Fock quantum Brownian motion and use the martingale representation theorem to characterise such processes in terms of covariantly adapted unitary evolutions [9] with a continuity property. The classical limits of the quantum dynamical semigroups associated with these processes are contrasted with those arising in the Fock case.
6 schema:editor N06281bd908d04c3fa6df678213a147a3
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc8606c6924304975b8dcab37f036b335
11 schema:keywords Brownian motion
12 Fock
13 Fock case
14 cases
15 classical limit
16 continuity properties
17 dynamical semigroups
18 evolution
19 filtration
20 initial space
21 integration
22 limit
23 main results
24 martingale representation theorem
25 motion
26 non-Fock quantum Brownian motion
27 process
28 properties
29 quantum Brownian motion
30 quantum dynamical semigroups
31 quantum martingale representation theorem
32 representation theorem
33 results
34 semigroups
35 space
36 stochastic integration
37 such processes
38 terms
39 theorem
40 theory
41 unitary evolution
42 unitary process
43 uses
44 schema:name Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem
45 schema:pagination 276-305
46 schema:productId N56c44463cb25416f9eb89477346871d6
47 Nfa310853067740ee8e75ac4a09e5a4f4
48 schema:publisher N6fbf3e22f8694e1ebf2aade07a24696b
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013871088
50 https://doi.org/10.1007/bfb0074480
51 schema:sdDatePublished 2021-11-01T18:49
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N6c88140087d54159ab371c7c9d2d479e
54 schema:url https://doi.org/10.1007/bfb0074480
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N06281bd908d04c3fa6df678213a147a3 rdf:first N18fd3748590c489681933bbdef516075
59 rdf:rest N5a52ee0c090d410da7b1f5853d832514
60 N0699640520554097906142df35796b53 rdf:first Nf4c81bf6c850456c88b4c04084aef6c6
61 rdf:rest rdf:nil
62 N18fd3748590c489681933bbdef516075 schema:familyName Accardi
63 schema:givenName Luigi
64 rdf:type schema:Person
65 N56c44463cb25416f9eb89477346871d6 schema:name doi
66 schema:value 10.1007/bfb0074480
67 rdf:type schema:PropertyValue
68 N5a52ee0c090d410da7b1f5853d832514 rdf:first N99dbdcda1c684b8da4a0204bf865d5e6
69 rdf:rest rdf:nil
70 N6c88140087d54159ab371c7c9d2d479e schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N6fbf3e22f8694e1ebf2aade07a24696b schema:name Springer Nature
73 rdf:type schema:Organisation
74 N70ffe26c0fa348e2bedad2afae92320d rdf:first Nace3da5a5427483f996eee51765e5539
75 rdf:rest N0699640520554097906142df35796b53
76 N99dbdcda1c684b8da4a0204bf865d5e6 schema:familyName von Waldenfels
77 schema:givenName Wilhelm
78 rdf:type schema:Person
79 Nace3da5a5427483f996eee51765e5539 schema:affiliation grid-institutes:grid.4563.4
80 schema:familyName Hudson
81 schema:givenName R L
82 rdf:type schema:Person
83 Nc8606c6924304975b8dcab37f036b335 schema:isbn 978-3-540-15661-1
84 978-3-540-39570-6
85 schema:name Quantum Probability and Applications II
86 rdf:type schema:Book
87 Nf4c81bf6c850456c88b4c04084aef6c6 schema:affiliation grid-institutes:grid.5337.2
88 schema:familyName Lindsay
89 schema:givenName J M
90 rdf:type schema:Person
91 Nfa310853067740ee8e75ac4a09e5a4f4 schema:name dimensions_id
92 schema:value pub.1013871088
93 rdf:type schema:PropertyValue
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 grid-institutes:grid.4563.4 schema:alternateName Mathematics Department, Nottingham University, NG7 2RD, Nottingham, England
98 schema:name Mathematics Department, Nottingham University, NG7 2RD, Nottingham, England
99 rdf:type schema:Organization
100 grid-institutes:grid.5337.2 schema:alternateName School of Mathematics, Bristol University, BS8 1TN, Bristol, England
101 schema:name School of Mathematics, Bristol University, BS8 1TN, Bristol, England
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...