Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

R L Hudson , J M Lindsay

ABSTRACT

After reviewing theories of stochastic integration against Fock and non-Fock quantum Brownian motion, we prove a martingale representation theorem for the latter, extending the main result of [12] by incorporating an initial space. We construct unitary processes adapted to the filtration of non-Fock quantum Brownian motion and use the martingale representation theorem to characterise such processes in terms of covariantly adapted unitary evolutions [9] with a continuity property. The classical limits of the quantum dynamical semigroups associated with these processes are contrasted with those arising in the Fock case. More... »

PAGES

276-305

References to SciGraph publications

Book

TITLE

Quantum Probability and Applications II

ISBN

978-3-540-15661-1
978-3-540-39570-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0074480

DOI

http://dx.doi.org/10.1007/bfb0074480

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013871088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Mathematics Department, Nottingham University, NG7 2RD\u00a0Nottingham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hudson", 
        "givenName": "R L", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bristol", 
          "id": "https://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "School of Mathematics, Bristol University, BS8 1TN\u00a0Bristol, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindsay", 
        "givenName": "J M", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01258530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002470453", 
          "https://doi.org/10.1007/bf01258530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01258530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002470453", 
          "https://doi.org/10.1007/bf01258530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006952044", 
          "https://doi.org/10.1007/bf01608499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012635534", 
          "https://doi.org/10.1007/bfb0070306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012635534", 
          "https://doi.org/10.1007/bfb0070306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(77)90035-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019869976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00402238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024713080", 
          "https://doi.org/10.1007/bf00402238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00402238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024713080", 
          "https://doi.org/10.1007/bf00402238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02280859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952518", 
          "https://doi.org/10.1007/bf02280859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02280859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952518", 
          "https://doi.org/10.1007/bf02280859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200035555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037031148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039870930", 
          "https://doi.org/10.1007/bf01212293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039870930", 
          "https://doi.org/10.1007/bf01212293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046688437", 
          "https://doi.org/10.1007/bf01976044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046688437", 
          "https://doi.org/10.1007/bf01976044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052470826", 
          "https://doi.org/10.1007/bf01212531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052470826", 
          "https://doi.org/10.1007/bf01212531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.526274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058103293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3212170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070226395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195181414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935097"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "After reviewing theories of stochastic integration against Fock and non-Fock quantum Brownian motion, we prove a martingale representation theorem for the latter, extending the main result of [12] by incorporating an initial space. We construct unitary processes adapted to the filtration of non-Fock quantum Brownian motion and use the martingale representation theorem to characterise such processes in terms of covariantly adapted unitary evolutions [9] with a continuity property. The classical limits of the quantum dynamical semigroups associated with these processes are contrasted with those arising in the Fock case.", 
    "editor": [
      {
        "familyName": "Accardi", 
        "givenName": "Luigi", 
        "type": "Person"
      }, 
      {
        "familyName": "von Waldenfels", 
        "givenName": "Wilhelm", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0074480", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-15661-1", 
        "978-3-540-39570-6"
      ], 
      "name": "Quantum Probability and Applications II", 
      "type": "Book"
    }, 
    "name": "Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem", 
    "pagination": "276-305", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0074480"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "42140f48dabc9691423614410861c0495359960bdb0afc068e1618215551e997"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013871088"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0074480", 
      "https://app.dimensions.ai/details/publication/pub.1013871088"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000251.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0074480"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0074480'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0074480 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N14b1780b419043b69321cf4611e65073
4 schema:citation sg:pub.10.1007/bf00402238
5 sg:pub.10.1007/bf01212293
6 sg:pub.10.1007/bf01212531
7 sg:pub.10.1007/bf01258530
8 sg:pub.10.1007/bf01608499
9 sg:pub.10.1007/bf01976044
10 sg:pub.10.1007/bf02280859
11 sg:pub.10.1007/bfb0070306
12 https://doi.org/10.1016/0047-259x(77)90035-5
13 https://doi.org/10.1017/s0021900200035555
14 https://doi.org/10.1063/1.526274
15 https://doi.org/10.2307/3212170
16 https://doi.org/10.2977/prims/1195181414
17 schema:datePublished 1985
18 schema:datePublishedReg 1985-01-01
19 schema:description After reviewing theories of stochastic integration against Fock and non-Fock quantum Brownian motion, we prove a martingale representation theorem for the latter, extending the main result of [12] by incorporating an initial space. We construct unitary processes adapted to the filtration of non-Fock quantum Brownian motion and use the martingale representation theorem to characterise such processes in terms of covariantly adapted unitary evolutions [9] with a continuity property. The classical limits of the quantum dynamical semigroups associated with these processes are contrasted with those arising in the Fock case.
20 schema:editor N90f9093167564bbb97885c9d216c706f
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nb327601de9f54e9a804d7aa4a4efa327
25 schema:name Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem
26 schema:pagination 276-305
27 schema:productId N705b1f56127e489a8f88b37149087fbd
28 Nbecaae3f49674dcbac36743d7805678a
29 Nc53523172b024410b4bc19141cfe5fcf
30 schema:publisher N9c054974aace4ef8aeba86451b8cdacb
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013871088
32 https://doi.org/10.1007/bfb0074480
33 schema:sdDatePublished 2019-04-15T21:57
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N7c186e86f1c8444681877bda65212418
36 schema:url http://link.springer.com/10.1007/BFb0074480
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N040c5c7b0c9944bf98d4338d3bc5a41f schema:affiliation https://www.grid.ac/institutes/grid.4563.4
41 schema:familyName Hudson
42 schema:givenName R L
43 rdf:type schema:Person
44 N14b1780b419043b69321cf4611e65073 rdf:first N040c5c7b0c9944bf98d4338d3bc5a41f
45 rdf:rest N1bb86aff0343423a9d2c81c4513e56fe
46 N1b6da6b957e545d9acd3f401d990a1d7 schema:familyName von Waldenfels
47 schema:givenName Wilhelm
48 rdf:type schema:Person
49 N1bb86aff0343423a9d2c81c4513e56fe rdf:first Nedcb1b468a53440d884ea8d0a2bea68f
50 rdf:rest rdf:nil
51 N705b1f56127e489a8f88b37149087fbd schema:name dimensions_id
52 schema:value pub.1013871088
53 rdf:type schema:PropertyValue
54 N7c186e86f1c8444681877bda65212418 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N83a98377b8164001a576b9782ae7291d schema:familyName Accardi
57 schema:givenName Luigi
58 rdf:type schema:Person
59 N90f9093167564bbb97885c9d216c706f rdf:first N83a98377b8164001a576b9782ae7291d
60 rdf:rest Na8a41b87a5954ab2a45e002bce12bd65
61 N9c054974aace4ef8aeba86451b8cdacb schema:location Berlin, Heidelberg
62 schema:name Springer Berlin Heidelberg
63 rdf:type schema:Organisation
64 Na8a41b87a5954ab2a45e002bce12bd65 rdf:first N1b6da6b957e545d9acd3f401d990a1d7
65 rdf:rest rdf:nil
66 Nb327601de9f54e9a804d7aa4a4efa327 schema:isbn 978-3-540-15661-1
67 978-3-540-39570-6
68 schema:name Quantum Probability and Applications II
69 rdf:type schema:Book
70 Nbecaae3f49674dcbac36743d7805678a schema:name doi
71 schema:value 10.1007/bfb0074480
72 rdf:type schema:PropertyValue
73 Nc53523172b024410b4bc19141cfe5fcf schema:name readcube_id
74 schema:value 42140f48dabc9691423614410861c0495359960bdb0afc068e1618215551e997
75 rdf:type schema:PropertyValue
76 Nedcb1b468a53440d884ea8d0a2bea68f schema:affiliation https://www.grid.ac/institutes/grid.5337.2
77 schema:familyName Lindsay
78 schema:givenName J M
79 rdf:type schema:Person
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
84 schema:name Quantum Physics
85 rdf:type schema:DefinedTerm
86 sg:pub.10.1007/bf00402238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024713080
87 https://doi.org/10.1007/bf00402238
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01212293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039870930
90 https://doi.org/10.1007/bf01212293
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01212531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052470826
93 https://doi.org/10.1007/bf01212531
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01258530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002470453
96 https://doi.org/10.1007/bf01258530
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01608499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006952044
99 https://doi.org/10.1007/bf01608499
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01976044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046688437
102 https://doi.org/10.1007/bf01976044
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf02280859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031952518
105 https://doi.org/10.1007/bf02280859
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bfb0070306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012635534
108 https://doi.org/10.1007/bfb0070306
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0047-259x(77)90035-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019869976
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/s0021900200035555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037031148
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.526274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058103293
115 rdf:type schema:CreativeWork
116 https://doi.org/10.2307/3212170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070226395
117 rdf:type schema:CreativeWork
118 https://doi.org/10.2977/prims/1195181414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935097
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
121 schema:name Mathematics Department, Nottingham University, NG7 2RD Nottingham, England
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
124 schema:name School of Mathematics, Bristol University, BS8 1TN Bristol, England
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...