Mechanics on a surface of constant negative curvature View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

Martin C. Gutzwiller

ABSTRACT

Chaotic dynamical systems can be studied using the example of a surface of constant negative curvature. Of particular interest are tori with one exceptional point, because the motion of a particle on such a surface is very close to the scattering of an electron on a small molecule. The explicit calculations require a surface which is compatible with the modular group. The construction of the known four cases is carried out with the help of elementary number theory, and the scattering function for the solutions of the Laplace operator is obtained. The geometrical discussion leads to tori with two exceptional points, as well as a special example of the latter which is compatible with the modular group and yet does not belong to a torus with only one exceptional point. A rather unusual representation of the general Fricke-Klein groups in terms of 4 by 4 matrices is also given, which is rational in two of the three traces A, B, and C, and does not use the third one. More... »

PAGES

230-258

Book

TITLE

Number Theory

ISBN

978-3-540-17669-5
978-3-540-47756-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0072983

DOI

http://dx.doi.org/10.1007/bfb0072983

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007399397


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, 10598, Yorktown Heights, N.Y., USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, 10598, Yorktown Heights, N.Y., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutzwiller", 
        "givenName": "Martin C.", 
        "id": "sg:person.07737020712.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737020712.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "Chaotic dynamical systems can be studied using the example of a surface of constant negative curvature. Of particular interest are tori with one exceptional point, because the motion of a particle on such a surface is very close to the scattering of an electron on a small molecule. The explicit calculations require a surface which is compatible with the modular group. The construction of the known four cases is carried out with the help of elementary number theory, and the scattering function for the solutions of the Laplace operator is obtained. The geometrical discussion leads to tori with two exceptional points, as well as a special example of the latter which is compatible with the modular group and yet does not belong to a torus with only one exceptional point. A rather unusual representation of the general Fricke-Klein groups in terms of 4 by 4 matrices is also given, which is rational in two of the three traces A, B, and C, and does not use the third one.", 
    "editor": [
      {
        "familyName": "Chudnovsky", 
        "givenName": "David V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chudnovsky", 
        "givenName": "Gregory V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cohn", 
        "givenName": "Harvey", 
        "type": "Person"
      }, 
      {
        "familyName": "Nathanson", 
        "givenName": "Melvyn B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0072983", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-17669-5", 
        "978-3-540-47756-3"
      ], 
      "name": "Number Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "constant negative curvature", 
      "exceptional points", 
      "modular group", 
      "chaotic dynamical systems", 
      "elementary number theory", 
      "negative curvature", 
      "dynamical systems", 
      "number theory", 
      "geometrical discussion", 
      "Laplace operator", 
      "explicit calculation", 
      "special example", 
      "TRACE A", 
      "unusual representation", 
      "torus", 
      "curvature", 
      "third one", 
      "operators", 
      "mechanics", 
      "point", 
      "motion", 
      "theory", 
      "particular interest", 
      "electrons", 
      "calculations", 
      "solution", 
      "matrix", 
      "scattering", 
      "representation", 
      "terms", 
      "surface", 
      "function", 
      "system", 
      "one", 
      "construction", 
      "particles", 
      "help", 
      "cases", 
      "interest", 
      "discussion", 
      "group", 
      "molecules", 
      "small molecules", 
      "example"
    ], 
    "name": "Mechanics on a surface of constant negative curvature", 
    "pagination": "230-258", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007399397"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0072983"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0072983", 
      "https://app.dimensions.ai/details/publication/pub.1007399397"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_15.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0072983"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0072983'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0072983'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0072983'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0072983'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      22 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0072983 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7f946684acb443a5a268f93d1b3d53a3
4 schema:datePublished 1987
5 schema:datePublishedReg 1987-01-01
6 schema:description Chaotic dynamical systems can be studied using the example of a surface of constant negative curvature. Of particular interest are tori with one exceptional point, because the motion of a particle on such a surface is very close to the scattering of an electron on a small molecule. The explicit calculations require a surface which is compatible with the modular group. The construction of the known four cases is carried out with the help of elementary number theory, and the scattering function for the solutions of the Laplace operator is obtained. The geometrical discussion leads to tori with two exceptional points, as well as a special example of the latter which is compatible with the modular group and yet does not belong to a torus with only one exceptional point. A rather unusual representation of the general Fricke-Klein groups in terms of 4 by 4 matrices is also given, which is rational in two of the three traces A, B, and C, and does not use the third one.
7 schema:editor N6215061a6c464adb9a6d6e382b01d102
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N713270d5f5854605b2e6d6866c0d83c6
11 schema:keywords Laplace operator
12 TRACE A
13 calculations
14 cases
15 chaotic dynamical systems
16 constant negative curvature
17 construction
18 curvature
19 discussion
20 dynamical systems
21 electrons
22 elementary number theory
23 example
24 exceptional points
25 explicit calculation
26 function
27 geometrical discussion
28 group
29 help
30 interest
31 matrix
32 mechanics
33 modular group
34 molecules
35 motion
36 negative curvature
37 number theory
38 one
39 operators
40 particles
41 particular interest
42 point
43 representation
44 scattering
45 small molecules
46 solution
47 special example
48 surface
49 system
50 terms
51 theory
52 third one
53 torus
54 unusual representation
55 schema:name Mechanics on a surface of constant negative curvature
56 schema:pagination 230-258
57 schema:productId N2ce9638bbde84591a9b6dc0b58d4c7b9
58 N700a73ea4c44443c8fb42d4019474f04
59 schema:publisher N0f03a6d1b88545e5b6d02b65b856bced
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007399397
61 https://doi.org/10.1007/bfb0072983
62 schema:sdDatePublished 2022-12-01T06:47
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N65c0ad80e541492199684b64e027d5d0
65 schema:url https://doi.org/10.1007/bfb0072983
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N0b40c28200cc44e780b63db14b51807c rdf:first N32a3c94f006e4fa3b0dea82480e3213b
70 rdf:rest rdf:nil
71 N0f03a6d1b88545e5b6d02b65b856bced schema:name Springer Nature
72 rdf:type schema:Organisation
73 N2752bafed79f4e54ae26f91930c9c6d7 schema:familyName Chudnovsky
74 schema:givenName Gregory V.
75 rdf:type schema:Person
76 N2ce9638bbde84591a9b6dc0b58d4c7b9 schema:name dimensions_id
77 schema:value pub.1007399397
78 rdf:type schema:PropertyValue
79 N32a3c94f006e4fa3b0dea82480e3213b schema:familyName Nathanson
80 schema:givenName Melvyn B.
81 rdf:type schema:Person
82 N36e802ca9038414cbac951bde423370f schema:familyName Chudnovsky
83 schema:givenName David V.
84 rdf:type schema:Person
85 N400a476ad9a640a58d139a76b06e6ea5 schema:familyName Cohn
86 schema:givenName Harvey
87 rdf:type schema:Person
88 N6215061a6c464adb9a6d6e382b01d102 rdf:first N36e802ca9038414cbac951bde423370f
89 rdf:rest Ndfaced4eabef4d5cbe372089598bda14
90 N65c0ad80e541492199684b64e027d5d0 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N700a73ea4c44443c8fb42d4019474f04 schema:name doi
93 schema:value 10.1007/bfb0072983
94 rdf:type schema:PropertyValue
95 N713270d5f5854605b2e6d6866c0d83c6 schema:isbn 978-3-540-17669-5
96 978-3-540-47756-3
97 schema:name Number Theory
98 rdf:type schema:Book
99 N7f946684acb443a5a268f93d1b3d53a3 rdf:first sg:person.07737020712.55
100 rdf:rest rdf:nil
101 Nbc1ee24080f44f0d9d4538892484b5ac rdf:first N400a476ad9a640a58d139a76b06e6ea5
102 rdf:rest N0b40c28200cc44e780b63db14b51807c
103 Ndfaced4eabef4d5cbe372089598bda14 rdf:first N2752bafed79f4e54ae26f91930c9c6d7
104 rdf:rest Nbc1ee24080f44f0d9d4538892484b5ac
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
109 schema:name Pure Mathematics
110 rdf:type schema:DefinedTerm
111 sg:person.07737020712.55 schema:affiliation grid-institutes:grid.481554.9
112 schema:familyName Gutzwiller
113 schema:givenName Martin C.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737020712.55
115 rdf:type schema:Person
116 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center, 10598, Yorktown Heights, N.Y., USA
117 schema:name IBM T.J. Watson Research Center, 10598, Yorktown Heights, N.Y., USA
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...