The weil conjectures in finite geometry View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

J. W. P. Hirschfeld

ABSTRACT

In the first section the Weil conjectures for non-singular primals are stated and several examples are given. Particularities for curves are described in section two. The remaining sections are devoted to elliptic cubic curves. In particular, the number of points that a cubic can have is precisely given, as well as the number of inequivalent curves with a fixed number of points. More... »

PAGES

6-23

Book

TITLE

Combinatorial Mathematics X

ISBN

978-3-540-12708-6
978-3-540-38694-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0071506

DOI

http://dx.doi.org/10.1007/bfb0071506

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017443524


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Hirschfeld", 
        "givenName": "J. W. P.", 
        "id": "sg:person.012124570705.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "In the first section the Weil conjectures for non-singular primals are stated and several examples are given. Particularities for curves are described in section two. The remaining sections are devoted to elliptic cubic curves. In particular, the number of points that a cubic can have is precisely given, as well as the number of inequivalent curves with a fixed number of points.", 
    "editor": [
      {
        "familyName": "Casse", 
        "givenName": "Louis Reynolds Antoine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0071506", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-12708-6", 
        "978-3-540-38694-0"
      ], 
      "name": "Combinatorial Mathematics X", 
      "type": "Book"
    }, 
    "keywords": [
      "number of points", 
      "elliptic cubic curves", 
      "Weil conjectures", 
      "finite geometry", 
      "cubic curve", 
      "conjecture", 
      "primals", 
      "geometry", 
      "point", 
      "curves", 
      "number", 
      "cubic", 
      "Weil", 
      "first section", 
      "section two", 
      "two", 
      "sections", 
      "particularities", 
      "example"
    ], 
    "name": "The weil conjectures in finite geometry", 
    "pagination": "6-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017443524"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0071506"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0071506", 
      "https://app.dimensions.ai/details/publication/pub.1017443524"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_420.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0071506"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      23 PREDICATES      45 URIs      38 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0071506 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncf5ad3f9e8e046478b21c5b85351eda8
4 schema:datePublished 1983
5 schema:datePublishedReg 1983-01-01
6 schema:description In the first section the Weil conjectures for non-singular primals are stated and several examples are given. Particularities for curves are described in section two. The remaining sections are devoted to elliptic cubic curves. In particular, the number of points that a cubic can have is precisely given, as well as the number of inequivalent curves with a fixed number of points.
7 schema:editor Nb757e3bdd71a4f598565431c5486ec6d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N50cb83716298458a9ef3f5a5f9c1e544
12 schema:keywords Weil
13 Weil conjectures
14 conjecture
15 cubic
16 cubic curve
17 curves
18 elliptic cubic curves
19 example
20 finite geometry
21 first section
22 geometry
23 number
24 number of points
25 particularities
26 point
27 primals
28 section two
29 sections
30 two
31 schema:name The weil conjectures in finite geometry
32 schema:pagination 6-23
33 schema:productId N002abe2aded842829ef992d515ca4284
34 N0e239931bdab421da7c64737045e480a
35 schema:publisher N71c2da55eefd4854b6931cc7c90ac1ad
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017443524
37 https://doi.org/10.1007/bfb0071506
38 schema:sdDatePublished 2022-05-10T10:52
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nd94ec4398c23476a8b5e88b58f251cbd
41 schema:url https://doi.org/10.1007/bfb0071506
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N002abe2aded842829ef992d515ca4284 schema:name doi
46 schema:value 10.1007/bfb0071506
47 rdf:type schema:PropertyValue
48 N0e239931bdab421da7c64737045e480a schema:name dimensions_id
49 schema:value pub.1017443524
50 rdf:type schema:PropertyValue
51 N50cb83716298458a9ef3f5a5f9c1e544 schema:isbn 978-3-540-12708-6
52 978-3-540-38694-0
53 schema:name Combinatorial Mathematics X
54 rdf:type schema:Book
55 N71c2da55eefd4854b6931cc7c90ac1ad schema:name Springer Nature
56 rdf:type schema:Organisation
57 Nb757e3bdd71a4f598565431c5486ec6d rdf:first Nc601e15555384525a5ab4dd198a19495
58 rdf:rest rdf:nil
59 Nc601e15555384525a5ab4dd198a19495 schema:familyName Casse
60 schema:givenName Louis Reynolds Antoine
61 rdf:type schema:Person
62 Ncf5ad3f9e8e046478b21c5b85351eda8 rdf:first sg:person.012124570705.64
63 rdf:rest rdf:nil
64 Nd94ec4398c23476a8b5e88b58f251cbd schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:person.012124570705.64 schema:familyName Hirschfeld
73 schema:givenName J. W. P.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
75 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...