The weil conjectures in finite geometry View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

J. W. P. Hirschfeld

ABSTRACT

In the first section the Weil conjectures for non-singular primals are stated and several examples are given. Particularities for curves are described in section two. The remaining sections are devoted to elliptic cubic curves. In particular, the number of points that a cubic can have is precisely given, as well as the number of inequivalent curves with a fixed number of points. More... »

PAGES

6-23

Book

TITLE

Combinatorial Mathematics X

ISBN

978-3-540-12708-6
978-3-540-38694-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0071506

DOI

http://dx.doi.org/10.1007/bfb0071506

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017443524


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Hirschfeld", 
        "givenName": "J. W. P.", 
        "id": "sg:person.012124570705.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "In the first section the Weil conjectures for non-singular primals are stated and several examples are given. Particularities for curves are described in section two. The remaining sections are devoted to elliptic cubic curves. In particular, the number of points that a cubic can have is precisely given, as well as the number of inequivalent curves with a fixed number of points.", 
    "editor": [
      {
        "familyName": "Casse", 
        "givenName": "Louis Reynolds Antoine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0071506", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-12708-6", 
        "978-3-540-38694-0"
      ], 
      "name": "Combinatorial Mathematics X", 
      "type": "Book"
    }, 
    "keywords": [
      "number of points", 
      "elliptic cubic curve", 
      "Weil conjectures", 
      "finite geometry", 
      "cubic curve", 
      "conjecture", 
      "primals", 
      "section two", 
      "Weil", 
      "geometry", 
      "point", 
      "number", 
      "first section", 
      "curves", 
      "cubic", 
      "two", 
      "particularities", 
      "sections", 
      "example", 
      "non-singular primals", 
      "inequivalent curves"
    ], 
    "name": "The weil conjectures in finite geometry", 
    "pagination": "6-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017443524"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0071506"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0071506", 
      "https://app.dimensions.ai/details/publication/pub.1017443524"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_376.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0071506"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0071506'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      23 PREDICATES      47 URIs      40 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0071506 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6a1e56fe12d3451299f6ef7ca149877a
4 schema:datePublished 1983
5 schema:datePublishedReg 1983-01-01
6 schema:description In the first section the Weil conjectures for non-singular primals are stated and several examples are given. Particularities for curves are described in section two. The remaining sections are devoted to elliptic cubic curves. In particular, the number of points that a cubic can have is precisely given, as well as the number of inequivalent curves with a fixed number of points.
7 schema:editor Ne2ca8d64614b49c0a117d8f4c2e170a9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N46066e0f7afd4290af4deeb8a000ead9
12 schema:keywords Weil
13 Weil conjectures
14 conjecture
15 cubic
16 cubic curve
17 curves
18 elliptic cubic curve
19 example
20 finite geometry
21 first section
22 geometry
23 inequivalent curves
24 non-singular primals
25 number
26 number of points
27 particularities
28 point
29 primals
30 section two
31 sections
32 two
33 schema:name The weil conjectures in finite geometry
34 schema:pagination 6-23
35 schema:productId N17792a9b656e4d69b4a8a8b4071ca5d5
36 N5e9e03b719f94e899faabb76b46605cc
37 schema:publisher N7e71fab0d7bd449db5d239293095e43f
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017443524
39 https://doi.org/10.1007/bfb0071506
40 schema:sdDatePublished 2022-01-01T19:21
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N61b322484aa446548fca777ad8040be6
43 schema:url https://doi.org/10.1007/bfb0071506
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N17792a9b656e4d69b4a8a8b4071ca5d5 schema:name dimensions_id
48 schema:value pub.1017443524
49 rdf:type schema:PropertyValue
50 N46066e0f7afd4290af4deeb8a000ead9 schema:isbn 978-3-540-12708-6
51 978-3-540-38694-0
52 schema:name Combinatorial Mathematics X
53 rdf:type schema:Book
54 N48efa84b22944f619906ff9275986661 schema:familyName Casse
55 schema:givenName Louis Reynolds Antoine
56 rdf:type schema:Person
57 N5e9e03b719f94e899faabb76b46605cc schema:name doi
58 schema:value 10.1007/bfb0071506
59 rdf:type schema:PropertyValue
60 N61b322484aa446548fca777ad8040be6 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N6a1e56fe12d3451299f6ef7ca149877a rdf:first sg:person.012124570705.64
63 rdf:rest rdf:nil
64 N7e71fab0d7bd449db5d239293095e43f schema:name Springer Nature
65 rdf:type schema:Organisation
66 Ne2ca8d64614b49c0a117d8f4c2e170a9 rdf:first N48efa84b22944f619906ff9275986661
67 rdf:rest rdf:nil
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:person.012124570705.64 schema:familyName Hirschfeld
75 schema:givenName J. W. P.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
77 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...