Counting unlabeled acyclic digraphs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1977

AUTHORS

R. W. Robinson

ABSTRACT

The previously known ways to count acyclic digraphs, both labeled and unlabeled, are reviewed. Then a new method of enumerating unlabeled acyclic digraphs is developed. It involves computing the sum of the cyclic indices of the automorphism groups of the acyclic digraphs, achieving a considerable gain in efficiency through an application of the inclusion-exclusion principle. Numerical results are reported on, and a table of the numbers of unlabeled acyclic digraphs on up to 18 points is included. More... »

PAGES

28-43

Book

TITLE

Combinatorial Mathematics V

ISBN

978-3-540-08524-9
978-3-540-37020-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0069178

DOI

http://dx.doi.org/10.1007/bfb0069178

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039869074


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Robinson", 
        "givenName": "R. W.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02546665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009730038", 
          "https://doi.org/10.1007/bf02546665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9800(70)80089-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023204106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2370675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069897435"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977", 
    "datePublishedReg": "1977-01-01", 
    "description": "The previously known ways to count acyclic digraphs, both labeled and unlabeled, are reviewed. Then a new method of enumerating unlabeled acyclic digraphs is developed. It involves computing the sum of the cyclic indices of the automorphism groups of the acyclic digraphs, achieving a considerable gain in efficiency through an application of the inclusion-exclusion principle. Numerical results are reported on, and a table of the numbers of unlabeled acyclic digraphs on up to 18 points is included.", 
    "editor": [
      {
        "familyName": "Little", 
        "givenName": "Charles H. C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0069178", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-08524-9", 
        "978-3-540-37020-8"
      ], 
      "name": "Combinatorial Mathematics V", 
      "type": "Book"
    }, 
    "name": "Counting unlabeled acyclic digraphs", 
    "pagination": "28-43", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0069178"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bdeaf2edf61bffbeeee160223033f1c2f009c7661a983fc0a9b87d435d6d5717"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039869074"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0069178", 
      "https://app.dimensions.ai/details/publication/pub.1039869074"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000268.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0069178"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0069178'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0069178'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0069178'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0069178'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0069178 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Na49ee560a8f44839922bb7473978b596
4 schema:citation sg:pub.10.1007/bf02546665
5 https://doi.org/10.1016/s0021-9800(70)80089-8
6 https://doi.org/10.2307/2370675
7 schema:datePublished 1977
8 schema:datePublishedReg 1977-01-01
9 schema:description The previously known ways to count acyclic digraphs, both labeled and unlabeled, are reviewed. Then a new method of enumerating unlabeled acyclic digraphs is developed. It involves computing the sum of the cyclic indices of the automorphism groups of the acyclic digraphs, achieving a considerable gain in efficiency through an application of the inclusion-exclusion principle. Numerical results are reported on, and a table of the numbers of unlabeled acyclic digraphs on up to 18 points is included.
10 schema:editor N9791e700afbd403c855614610a631c46
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N778320e3e8254d91a2884d61c93d38da
15 schema:name Counting unlabeled acyclic digraphs
16 schema:pagination 28-43
17 schema:productId N51ace79ac8474fbcb9be5acbc0b55f27
18 N806273060e94440b95f0b1b046e64a4c
19 Nfa9c4d9b9dfc428ea0932f9f565acb94
20 schema:publisher Nabaecc3f837246ae93ab377e93237533
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039869074
22 https://doi.org/10.1007/bfb0069178
23 schema:sdDatePublished 2019-04-15T22:57
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Nd303a838bba44f68b376fa07efe0db69
26 schema:url http://link.springer.com/10.1007/BFb0069178
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N438a88cf6fac4242a1c54d317e4914ab schema:familyName Robinson
31 schema:givenName R. W.
32 rdf:type schema:Person
33 N51ace79ac8474fbcb9be5acbc0b55f27 schema:name readcube_id
34 schema:value bdeaf2edf61bffbeeee160223033f1c2f009c7661a983fc0a9b87d435d6d5717
35 rdf:type schema:PropertyValue
36 N778320e3e8254d91a2884d61c93d38da schema:isbn 978-3-540-08524-9
37 978-3-540-37020-8
38 schema:name Combinatorial Mathematics V
39 rdf:type schema:Book
40 N806273060e94440b95f0b1b046e64a4c schema:name dimensions_id
41 schema:value pub.1039869074
42 rdf:type schema:PropertyValue
43 N9791e700afbd403c855614610a631c46 rdf:first Nca81a5470e3c4075b73ebf859b177ed1
44 rdf:rest rdf:nil
45 Na49ee560a8f44839922bb7473978b596 rdf:first N438a88cf6fac4242a1c54d317e4914ab
46 rdf:rest rdf:nil
47 Nabaecc3f837246ae93ab377e93237533 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 Nca81a5470e3c4075b73ebf859b177ed1 schema:familyName Little
51 schema:givenName Charles H. C.
52 rdf:type schema:Person
53 Nd303a838bba44f68b376fa07efe0db69 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nfa9c4d9b9dfc428ea0932f9f565acb94 schema:name doi
56 schema:value 10.1007/bfb0069178
57 rdf:type schema:PropertyValue
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
62 schema:name Computation Theory and Mathematics
63 rdf:type schema:DefinedTerm
64 sg:pub.10.1007/bf02546665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009730038
65 https://doi.org/10.1007/bf02546665
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1016/s0021-9800(70)80089-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023204106
68 rdf:type schema:CreativeWork
69 https://doi.org/10.2307/2370675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069897435
70 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...