Modular forms whose fourier coefficients involve zeta-functions of quadratic fields View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1977

AUTHORS

D. Zagier

ABSTRACT

N/A

PAGES

105-169

Book

TITLE

Modular Functions of One Variable VI

ISBN

978-3-540-08530-0
978-3-540-35984-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0065299

DOI

http://dx.doi.org/10.1007/bfb0065299

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041685042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Zagier", 
        "givenName": "D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01389886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002137876", 
          "https://doi.org/10.1007/bf01389886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-2.1.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003552406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400881666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004465072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160290618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017414764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160290618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017414764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021953278", 
          "https://doi.org/10.1007/bf01389846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01390005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022160824", 
          "https://doi.org/10.1007/bf01390005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01344466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038045861", 
          "https://doi.org/10.1007/bf01344466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-31.1.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039073123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01436180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043838697", 
          "https://doi.org/10.1007/bf01436180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01436180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043838697", 
          "https://doi.org/10.1007/bf01436180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01391220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045433790", 
          "https://doi.org/10.1007/bf01391220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100021095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054024137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-43-01041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064416302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2969/jmsj/02540547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070930687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2969/jmsj/02810048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070930804"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977", 
    "datePublishedReg": "1977-01-01", 
    "editor": [
      {
        "familyName": "Serre", 
        "givenName": "Jean-Pierre", 
        "type": "Person"
      }, 
      {
        "familyName": "Zagier", 
        "givenName": "Don Bernard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0065299", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-08530-0", 
        "978-3-540-35984-5"
      ], 
      "name": "Modular Functions of One Variable VI", 
      "type": "Book"
    }, 
    "name": "Modular forms whose fourier coefficients involve zeta-functions of quadratic fields", 
    "pagination": "105-169", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0065299"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c691dedf2a16a8c447057aa1bc805667d8eef7361e1481f63c02d6d4a0fa2f05"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041685042"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0065299", 
      "https://app.dimensions.ai/details/publication/pub.1041685042"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000322.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0065299"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0065299'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0065299'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0065299'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0065299'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0065299 schema:author N3a0acf20f53544cd821c1979725d8176
2 schema:citation sg:pub.10.1007/bf01344466
3 sg:pub.10.1007/bf01389846
4 sg:pub.10.1007/bf01389886
5 sg:pub.10.1007/bf01390005
6 sg:pub.10.1007/bf01391220
7 sg:pub.10.1007/bf01436180
8 https://doi.org/10.1002/cpa.3160290618
9 https://doi.org/10.1017/s0305004100021095
10 https://doi.org/10.1112/plms/s3-2.1.198
11 https://doi.org/10.1112/plms/s3-31.1.79
12 https://doi.org/10.1215/s0012-7094-43-01041-5
13 https://doi.org/10.1515/9781400881666
14 https://doi.org/10.2307/1970831
15 https://doi.org/10.2969/jmsj/02540547
16 https://doi.org/10.2969/jmsj/02810048
17 schema:datePublished 1977
18 schema:datePublishedReg 1977-01-01
19 schema:editor N28dfd497294e4df0960d3fc5f2430223
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Ne28411dcdfac4dc398281a6c32dd8ba7
24 schema:name Modular forms whose fourier coefficients involve zeta-functions of quadratic fields
25 schema:pagination 105-169
26 schema:productId N15014af63f9441a8ba5154681220b631
27 N6d9f7d300f004d63a3accf9d7596faa9
28 Naced362f5f104f94a0ddc52ddfdab8b3
29 schema:publisher N79d6a7dd8eec41a994af1985762eb610
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041685042
31 https://doi.org/10.1007/bfb0065299
32 schema:sdDatePublished 2019-04-16T00:57
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N05bad81419844c10918e37c68613999c
35 schema:url http://link.springer.com/10.1007/BFb0065299
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N05bad81419844c10918e37c68613999c schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N15014af63f9441a8ba5154681220b631 schema:name readcube_id
42 schema:value c691dedf2a16a8c447057aa1bc805667d8eef7361e1481f63c02d6d4a0fa2f05
43 rdf:type schema:PropertyValue
44 N28dfd497294e4df0960d3fc5f2430223 rdf:first Ne773f3b1aa684ba3939e8d6681ec671f
45 rdf:rest N3dff3f0dd22a4b13b339dbbf902d2d30
46 N3a0acf20f53544cd821c1979725d8176 rdf:first Nd4451633a1ce42c7b3218dc1de6ee368
47 rdf:rest rdf:nil
48 N3dff3f0dd22a4b13b339dbbf902d2d30 rdf:first Nfeab0b7d54f34950bb06efb5bf7db737
49 rdf:rest rdf:nil
50 N6d9f7d300f004d63a3accf9d7596faa9 schema:name dimensions_id
51 schema:value pub.1041685042
52 rdf:type schema:PropertyValue
53 N79d6a7dd8eec41a994af1985762eb610 schema:location Berlin, Heidelberg
54 schema:name Springer Berlin Heidelberg
55 rdf:type schema:Organisation
56 Naced362f5f104f94a0ddc52ddfdab8b3 schema:name doi
57 schema:value 10.1007/bfb0065299
58 rdf:type schema:PropertyValue
59 Nd4451633a1ce42c7b3218dc1de6ee368 schema:familyName Zagier
60 schema:givenName D.
61 rdf:type schema:Person
62 Ne28411dcdfac4dc398281a6c32dd8ba7 schema:isbn 978-3-540-08530-0
63 978-3-540-35984-5
64 schema:name Modular Functions of One Variable VI
65 rdf:type schema:Book
66 Ne773f3b1aa684ba3939e8d6681ec671f schema:familyName Serre
67 schema:givenName Jean-Pierre
68 rdf:type schema:Person
69 Nfeab0b7d54f34950bb06efb5bf7db737 schema:familyName Zagier
70 schema:givenName Don Bernard
71 rdf:type schema:Person
72 sg:pub.10.1007/bf01344466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038045861
73 https://doi.org/10.1007/bf01344466
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01389846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021953278
76 https://doi.org/10.1007/bf01389846
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01389886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002137876
79 https://doi.org/10.1007/bf01389886
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01390005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022160824
82 https://doi.org/10.1007/bf01390005
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01391220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045433790
85 https://doi.org/10.1007/bf01391220
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01436180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043838697
88 https://doi.org/10.1007/bf01436180
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/cpa.3160290618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017414764
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1017/s0305004100021095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054024137
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1112/plms/s3-2.1.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003552406
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1112/plms/s3-31.1.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039073123
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1215/s0012-7094-43-01041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064416302
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1515/9781400881666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004465072
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1970831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676142
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2969/jmsj/02540547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070930687
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2969/jmsj/02810048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070930804
107 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...