Averaging efficiently in the presence of noise View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

Peter Stagge

ABSTRACT

In this paper the problem of averaging because of noise on the fitness function is addressed. In simulations noise is mostly restricted to the finite precision of the numbers and can often be neglected. However in biology fluctuations are ubiquitous and also in real world applications, where evolutionary methods are used as optimization tools, the presence of noise has to be coped with [1]. This article originated from the second point: Optimizing the structure of Neural Networks their fitness is the result of a learning process. This value depends on the stochastic initialization of the connection strengths and thus represents a noisy fitness value. To reduce noise one can average over several evaluations per individual which is costly. The aim of this work is to introduce a method to reduce the number of evaluations per individual. More... »

PAGES

188-197

Book

TITLE

Parallel Problem Solving from Nature — PPSN V

ISBN

978-3-540-65078-2
978-3-540-49672-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0056862

DOI

http://dx.doi.org/10.1007/bfb0056862

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051307113


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ruhr University Bochum", 
          "id": "https://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "Institut f\u00fcr Neuroinformatik, Ruhr-Universit\u00e4t-Bochum, 44780\u00a0Bochum, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stagge", 
        "givenName": "Peter", 
        "id": "sg:person.010720471031.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720471031.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.65.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839279"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "In this paper the problem of averaging because of noise on the fitness function is addressed. In simulations noise is mostly restricted to the finite precision of the numbers and can often be neglected. However in biology fluctuations are ubiquitous and also in real world applications, where evolutionary methods are used as optimization tools, the presence of noise has to be coped with [1]. This article originated from the second point: Optimizing the structure of Neural Networks their fitness is the result of a learning process. This value depends on the stochastic initialization of the connection strengths and thus represents a noisy fitness value. To reduce noise one can average over several evaluations per individual which is costly. The aim of this work is to introduce a method to reduce the number of evaluations per individual.", 
    "editor": [
      {
        "familyName": "Eiben", 
        "givenName": "Agoston E.", 
        "type": "Person"
      }, 
      {
        "familyName": "B\u00e4ck", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "familyName": "Schoenauer", 
        "givenName": "Marc", 
        "type": "Person"
      }, 
      {
        "familyName": "Schwefel", 
        "givenName": "Hans-Paul", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0056862", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-65078-2", 
        "978-3-540-49672-4"
      ], 
      "name": "Parallel Problem Solving from Nature \u2014 PPSN V", 
      "type": "Book"
    }, 
    "name": "Averaging efficiently in the presence of noise", 
    "pagination": "188-197", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0056862"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f4678774763cbaa6950ad118c5ce66b8152d6c5817d664ef30cc1f076b7d52ff"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051307113"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0056862", 
      "https://app.dimensions.ai/details/publication/pub.1051307113"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0056862"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0056862'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0056862'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0056862'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0056862'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0056862 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ncd3c99390c474356897750b60608cb47
4 schema:citation https://doi.org/10.1103/revmodphys.65.1331
5 schema:datePublished 1998
6 schema:datePublishedReg 1998-01-01
7 schema:description In this paper the problem of averaging because of noise on the fitness function is addressed. In simulations noise is mostly restricted to the finite precision of the numbers and can often be neglected. However in biology fluctuations are ubiquitous and also in real world applications, where evolutionary methods are used as optimization tools, the presence of noise has to be coped with [1]. This article originated from the second point: Optimizing the structure of Neural Networks their fitness is the result of a learning process. This value depends on the stochastic initialization of the connection strengths and thus represents a noisy fitness value. To reduce noise one can average over several evaluations per individual which is costly. The aim of this work is to introduce a method to reduce the number of evaluations per individual.
8 schema:editor Nd01d9faabcdc44bd93b5d2e21c48ea21
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N5fe572eaa8474580813b95e6544dfe76
13 schema:name Averaging efficiently in the presence of noise
14 schema:pagination 188-197
15 schema:productId N8f6f66211184438b804b179b8efdabb7
16 Nb1ff7791491942a0b9113e3195da4581
17 Nce9dac4fb1aa4aafae003e2735d891e0
18 schema:publisher N3e02c95de09c48288a2c3f4692509c1b
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051307113
20 https://doi.org/10.1007/bfb0056862
21 schema:sdDatePublished 2019-04-15T22:58
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N0a305d25b33a42cf97cb46724a27a9a6
24 schema:url http://link.springer.com/10.1007/BFb0056862
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N0a305d25b33a42cf97cb46724a27a9a6 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N1858ec783429463cb44a7de9053942f5 rdf:first Ncc85b73464ce4537b3a61eae4034bae0
31 rdf:rest Nb86507ff0a344b688b51e9d43d4b53e2
32 N3e02c95de09c48288a2c3f4692509c1b schema:location Berlin, Heidelberg
33 schema:name Springer Berlin Heidelberg
34 rdf:type schema:Organisation
35 N586d4ae7784144d6a70a66507b637406 schema:familyName Bäck
36 schema:givenName Thomas
37 rdf:type schema:Person
38 N5fe572eaa8474580813b95e6544dfe76 schema:isbn 978-3-540-49672-4
39 978-3-540-65078-2
40 schema:name Parallel Problem Solving from Nature — PPSN V
41 rdf:type schema:Book
42 N67a53d0b73af4c34b3e0b9d96f338727 rdf:first N586d4ae7784144d6a70a66507b637406
43 rdf:rest N1858ec783429463cb44a7de9053942f5
44 N8f6f66211184438b804b179b8efdabb7 schema:name doi
45 schema:value 10.1007/bfb0056862
46 rdf:type schema:PropertyValue
47 Nb1ff7791491942a0b9113e3195da4581 schema:name dimensions_id
48 schema:value pub.1051307113
49 rdf:type schema:PropertyValue
50 Nb60d8842acdf44b29ce7a2ebdc3e5c12 schema:familyName Eiben
51 schema:givenName Agoston E.
52 rdf:type schema:Person
53 Nb86507ff0a344b688b51e9d43d4b53e2 rdf:first Ndb7112d84c904ccd9bcf8b3a3b90cb02
54 rdf:rest rdf:nil
55 Ncc85b73464ce4537b3a61eae4034bae0 schema:familyName Schoenauer
56 schema:givenName Marc
57 rdf:type schema:Person
58 Ncd3c99390c474356897750b60608cb47 rdf:first sg:person.010720471031.97
59 rdf:rest rdf:nil
60 Nce9dac4fb1aa4aafae003e2735d891e0 schema:name readcube_id
61 schema:value f4678774763cbaa6950ad118c5ce66b8152d6c5817d664ef30cc1f076b7d52ff
62 rdf:type schema:PropertyValue
63 Nd01d9faabcdc44bd93b5d2e21c48ea21 rdf:first Nb60d8842acdf44b29ce7a2ebdc3e5c12
64 rdf:rest N67a53d0b73af4c34b3e0b9d96f338727
65 Ndb7112d84c904ccd9bcf8b3a3b90cb02 schema:familyName Schwefel
66 schema:givenName Hans-Paul
67 rdf:type schema:Person
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
72 schema:name Statistics
73 rdf:type schema:DefinedTerm
74 sg:person.010720471031.97 schema:affiliation https://www.grid.ac/institutes/grid.5570.7
75 schema:familyName Stagge
76 schema:givenName Peter
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720471031.97
78 rdf:type schema:Person
79 https://doi.org/10.1103/revmodphys.65.1331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839279
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.5570.7 schema:alternateName Ruhr University Bochum
82 schema:name Institut für Neuroinformatik, Ruhr-Universität-Bochum, 44780 Bochum, Germany
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...