Contour continuity in region based image segmentation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1998

AUTHORS

Thomas Leung , Jitendra Malik

ABSTRACT

Region-based image segmentation techniques make use of similarity in intensity, color and texture to determine the partitioning of an image. The powerful cue of contour continuity is not exploited at all. In this paper, we provide a way of incorporating curvilinear grouping into region-based image segmentation. Soft contour information is obtained through orientation energy. Weak contrast gaps and subjective contours are completed by contour propagation. The normalized cut approach proposed by Shi and Malik is used for the segmentation. Results on a large variety of images are shown. More... »

PAGES

544-559

Book

TITLE

Computer Vision — ECCV'98

ISBN

978-3-540-64569-6
978-3-540-69354-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0055689

DOI

http://dx.doi.org/10.1007/bfb0055689

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047873554


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720\u00a0Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Thomas", 
        "id": "sg:person.016034550437.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720\u00a0Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malik", 
        "givenName": "Jitendra", 
        "id": "sg:person.01364521761.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Region-based image segmentation techniques make use of similarity in intensity, color and texture to determine the partitioning of an image. The powerful cue of contour continuity is not exploited at all. In this paper, we provide a way of incorporating curvilinear grouping into region-based image segmentation. Soft contour information is obtained through orientation energy. Weak contrast gaps and subjective contours are completed by contour propagation. The normalized cut approach proposed by Shi and Malik is used for the segmentation. Results on a large variety of images are shown.", 
    "editor": [
      {
        "familyName": "Burkhardt", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Neumann", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0055689", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-64569-6", 
        "978-3-540-69354-3"
      ], 
      "name": "Computer Vision \u2014 ECCV'98", 
      "type": "Book"
    }, 
    "name": "Contour continuity in region based image segmentation", 
    "pagination": "544-559", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0055689"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e40eea7a1a27658159f0d35913d1879779ec0f4c7e19b09477007d4669c1d33a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047873554"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0055689", 
      "https://app.dimensions.ai/details/publication/pub.1047873554"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000082.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0055689"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0055689 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9501c7db584142c9b9fa1b905fa31709
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description Region-based image segmentation techniques make use of similarity in intensity, color and texture to determine the partitioning of an image. The powerful cue of contour continuity is not exploited at all. In this paper, we provide a way of incorporating curvilinear grouping into region-based image segmentation. Soft contour information is obtained through orientation energy. Weak contrast gaps and subjective contours are completed by contour propagation. The normalized cut approach proposed by Shi and Malik is used for the segmentation. Results on a large variety of images are shown.
7 schema:editor N745b2d9d9afb48fa91e70a0ab9465fc3
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N25c57506fe9c4339b9a37239d3e7e65f
12 schema:name Contour continuity in region based image segmentation
13 schema:pagination 544-559
14 schema:productId N311fd1dd4ea6432fb242b159177e3164
15 N45c10090570e4deb824d81bbfac327e3
16 Nbd2fb33229324ad4b9b0e0545d47f5e8
17 schema:publisher N176fb600a8e94bec9e1def2f6c3c0e37
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047873554
19 https://doi.org/10.1007/bfb0055689
20 schema:sdDatePublished 2019-04-15T17:03
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N7e5629c70b214fd398f70d032b65edb5
23 schema:url http://link.springer.com/10.1007/BFb0055689
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N176fb600a8e94bec9e1def2f6c3c0e37 schema:location Berlin, Heidelberg
28 schema:name Springer Berlin Heidelberg
29 rdf:type schema:Organisation
30 N25c57506fe9c4339b9a37239d3e7e65f schema:isbn 978-3-540-64569-6
31 978-3-540-69354-3
32 schema:name Computer Vision — ECCV'98
33 rdf:type schema:Book
34 N311fd1dd4ea6432fb242b159177e3164 schema:name doi
35 schema:value 10.1007/bfb0055689
36 rdf:type schema:PropertyValue
37 N45c10090570e4deb824d81bbfac327e3 schema:name dimensions_id
38 schema:value pub.1047873554
39 rdf:type schema:PropertyValue
40 N726be8d3c8474ac4a1458849d29d37fe schema:familyName Burkhardt
41 schema:givenName Hans
42 rdf:type schema:Person
43 N745b2d9d9afb48fa91e70a0ab9465fc3 rdf:first N726be8d3c8474ac4a1458849d29d37fe
44 rdf:rest Nf3407ae0faef4e78abcc7beddaf65ba3
45 N7e5629c70b214fd398f70d032b65edb5 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N9501c7db584142c9b9fa1b905fa31709 rdf:first sg:person.016034550437.98
48 rdf:rest Nc0d8fa747c35444f800518dad07eec60
49 Nbd2fb33229324ad4b9b0e0545d47f5e8 schema:name readcube_id
50 schema:value e40eea7a1a27658159f0d35913d1879779ec0f4c7e19b09477007d4669c1d33a
51 rdf:type schema:PropertyValue
52 Nc0d8fa747c35444f800518dad07eec60 rdf:first sg:person.01364521761.84
53 rdf:rest rdf:nil
54 Nf3407ae0faef4e78abcc7beddaf65ba3 rdf:first Nf95057bc0d8547428b2a0dc9da3538a9
55 rdf:rest rdf:nil
56 Nf95057bc0d8547428b2a0dc9da3538a9 schema:familyName Neumann
57 schema:givenName Bernd
58 rdf:type schema:Person
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
63 schema:name Artificial Intelligence and Image Processing
64 rdf:type schema:DefinedTerm
65 sg:person.01364521761.84 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
66 schema:familyName Malik
67 schema:givenName Jitendra
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84
69 rdf:type schema:Person
70 sg:person.016034550437.98 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
71 schema:familyName Leung
72 schema:givenName Thomas
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98
74 rdf:type schema:Person
75 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
76 schema:name Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720 Berkeley, CA, USA
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...