Contour continuity in region based image segmentation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1998

AUTHORS

Thomas Leung , Jitendra Malik

ABSTRACT

Region-based image segmentation techniques make use of similarity in intensity, color and texture to determine the partitioning of an image. The powerful cue of contour continuity is not exploited at all. In this paper, we provide a way of incorporating curvilinear grouping into region-based image segmentation. Soft contour information is obtained through orientation energy. Weak contrast gaps and subjective contours are completed by contour propagation. The normalized cut approach proposed by Shi and Malik is used for the segmentation. Results on a large variety of images are shown. More... »

PAGES

544-559

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0055689

DOI

http://dx.doi.org/10.1007/bfb0055689

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047873554


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Thomas", 
        "id": "sg:person.016034550437.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malik", 
        "givenName": "Jitendra", 
        "id": "sg:person.01364521761.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Region-based image segmentation techniques make use of similarity in intensity, color and texture to determine the partitioning of an image. The powerful cue of contour continuity is not exploited at all. In this paper, we provide a way of incorporating curvilinear grouping into region-based image segmentation. Soft contour information is obtained through orientation energy. Weak contrast gaps and subjective contours are completed by contour propagation. The normalized cut approach proposed by Shi and Malik is used for the segmentation. Results on a large variety of images are shown.", 
    "editor": [
      {
        "familyName": "Burkhardt", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Neumann", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0055689", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-64569-6", 
        "978-3-540-69354-3"
      ], 
      "name": "Computer Vision \u2014 ECCV'98", 
      "type": "Book"
    }, 
    "keywords": [
      "image segmentation techniques", 
      "region-based image segmentation", 
      "image segmentation", 
      "normalized cut approach", 
      "region-based image segmentation technique", 
      "segmentation technique", 
      "use of similarity", 
      "contour continuity", 
      "segmentation", 
      "contour information", 
      "cut approach", 
      "images", 
      "powerful cue", 
      "contour propagation", 
      "large variety", 
      "technique", 
      "texture", 
      "partitioning", 
      "way", 
      "information", 
      "contours", 
      "use", 
      "similarity", 
      "color", 
      "cues", 
      "continuity", 
      "gap", 
      "Malik", 
      "results", 
      "variety", 
      "orientation energy", 
      "subjective contours", 
      "propagation", 
      "Shi", 
      "intensity", 
      "curvilinear", 
      "energy", 
      "region", 
      "paper", 
      "approach"
    ], 
    "name": "Contour continuity in region based image segmentation", 
    "pagination": "544-559", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047873554"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0055689"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0055689", 
      "https://app.dimensions.ai/details/publication/pub.1047873554"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_8.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0055689"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0055689'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0055689 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N757c4a6055ad4294a0c07192182411bb
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description Region-based image segmentation techniques make use of similarity in intensity, color and texture to determine the partitioning of an image. The powerful cue of contour continuity is not exploited at all. In this paper, we provide a way of incorporating curvilinear grouping into region-based image segmentation. Soft contour information is obtained through orientation energy. Weak contrast gaps and subjective contours are completed by contour propagation. The normalized cut approach proposed by Shi and Malik is used for the segmentation. Results on a large variety of images are shown.
7 schema:editor N8a4ee2eb3b254f17a4f105f01788929e
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N31d45d543c2741f4a3feb161c916c16b
11 schema:keywords Malik
12 Shi
13 approach
14 color
15 continuity
16 contour continuity
17 contour information
18 contour propagation
19 contours
20 cues
21 curvilinear
22 cut approach
23 energy
24 gap
25 image segmentation
26 image segmentation techniques
27 images
28 information
29 intensity
30 large variety
31 normalized cut approach
32 orientation energy
33 paper
34 partitioning
35 powerful cue
36 propagation
37 region
38 region-based image segmentation
39 region-based image segmentation technique
40 results
41 segmentation
42 segmentation technique
43 similarity
44 subjective contours
45 technique
46 texture
47 use
48 use of similarity
49 variety
50 way
51 schema:name Contour continuity in region based image segmentation
52 schema:pagination 544-559
53 schema:productId N58551327890d4dc28cd6ab6936cd1f52
54 N78c8e50fb3b446d49071963f6d3c2cd0
55 schema:publisher N34e19640403d410a886034433a59aeee
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047873554
57 https://doi.org/10.1007/bfb0055689
58 schema:sdDatePublished 2022-12-01T06:55
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nb86f3ddfc7fc463185f06dee7721d00c
61 schema:url https://doi.org/10.1007/bfb0055689
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N1f320b5c561c49b0ba1167a5c660a897 rdf:first sg:person.01364521761.84
66 rdf:rest rdf:nil
67 N2b8135e3a28c440c8bf551bceee74468 schema:familyName Neumann
68 schema:givenName Bernd
69 rdf:type schema:Person
70 N31d45d543c2741f4a3feb161c916c16b schema:isbn 978-3-540-64569-6
71 978-3-540-69354-3
72 schema:name Computer Vision — ECCV'98
73 rdf:type schema:Book
74 N34e19640403d410a886034433a59aeee schema:name Springer Nature
75 rdf:type schema:Organisation
76 N58551327890d4dc28cd6ab6936cd1f52 schema:name dimensions_id
77 schema:value pub.1047873554
78 rdf:type schema:PropertyValue
79 N68c9bd66d39a4c11b2031f3f328551d7 schema:familyName Burkhardt
80 schema:givenName Hans
81 rdf:type schema:Person
82 N757c4a6055ad4294a0c07192182411bb rdf:first sg:person.016034550437.98
83 rdf:rest N1f320b5c561c49b0ba1167a5c660a897
84 N78c8e50fb3b446d49071963f6d3c2cd0 schema:name doi
85 schema:value 10.1007/bfb0055689
86 rdf:type schema:PropertyValue
87 N8a4ee2eb3b254f17a4f105f01788929e rdf:first N68c9bd66d39a4c11b2031f3f328551d7
88 rdf:rest Nfa4481f39b7b463189d4d005865a5d97
89 Nb86f3ddfc7fc463185f06dee7721d00c schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nfa4481f39b7b463189d4d005865a5d97 rdf:first N2b8135e3a28c440c8bf551bceee74468
92 rdf:rest rdf:nil
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:person.01364521761.84 schema:affiliation grid-institutes:grid.47840.3f
100 schema:familyName Malik
101 schema:givenName Jitendra
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84
103 rdf:type schema:Person
104 sg:person.016034550437.98 schema:affiliation grid-institutes:grid.47840.3f
105 schema:familyName Leung
106 schema:givenName Thomas
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98
108 rdf:type schema:Person
109 grid-institutes:grid.47840.3f schema:alternateName Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720, Berkeley, CA, USA
110 schema:name Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, 94720, Berkeley, CA, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...