Differential fault analysis of secret key cryptosystems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006-05-17

AUTHORS

Eli Biham , Adi Shamir

ABSTRACT

In September 1996 Boneh, Demillo, and Lipton from Bellcore announced a new type of cryptanalytic attack which exploits computational errors to find cryptographic keys. Their attack is based on algebraic properties of modular arithmetic, and thus it is applicable only to public key cryptosystems such as RSA, and not to secret key algorithms such as the Data Encryption Standard (DES). In this paper, we describe a related attack, which we call Differential Fault Analysis, or DFA, and show that it is applicable to almost any secret key cryptosystem proposed so far in the open literature. Our DFA attack can use various fault models and various cryptanalytic techniques to recover the cryptographic secrets hidden in the tarn per-resistant device. In particular, we have demonstrated that under the same hardware fault model used by the Bellcore researchers, we can extract the full DES key from a sealed tamper-resistant DES encryptor by analyzing between 50 and 200 ciphertexts generated from unknown but related plaintexts. In the second part of the paper we develop techniques to identify the keys of completely unknown ciphers (such as Skipjack) sealed in tamper-resistant devices, and to reconstruct the complete specification of DES-like unknown ciphers. In the last part of the paper, we consider a different fault model, based on permanent hardware faults, and show that it can be used to break DES by analyzing a small number of ciphertexts generated from completely unknown and unrelated plaintexts. More... »

PAGES

513-525

References to SciGraph publications

Book

TITLE

Advances in Cryptology — CRYPTO '97

ISBN

978-3-540-63384-6
978-3-540-69528-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0052259

DOI

http://dx.doi.org/10.1007/bfb0052259

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017540643


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Computer Science Department, Technion - Israel Institute of Technology, 32000, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biham", 
        "givenName": "Eli", 
        "id": "sg:person.014332733635.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014332733635.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Applied Math. and Comp. Sci. Department, The Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shamir", 
        "givenName": "Adi", 
        "id": "sg:person.013052746407.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052746407.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00203965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045432758", 
          "https://doi.org/10.1007/bf00203965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045432758", 
          "https://doi.org/10.1007/bf00203965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047747404", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9314-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047747404", 
          "https://doi.org/10.1007/978-1-4613-9314-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-9314-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047747404", 
          "https://doi.org/10.1007/978-1-4613-9314-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-05-17", 
    "datePublishedReg": "2006-05-17", 
    "description": "In September 1996 Boneh, Demillo, and Lipton from Bellcore announced a new type of cryptanalytic attack which exploits computational errors to find cryptographic keys. Their attack is based on algebraic properties of modular arithmetic, and thus it is applicable only to public key cryptosystems such as RSA, and not to secret key algorithms such as the Data Encryption Standard (DES). In this paper, we describe a related attack, which we call Differential Fault Analysis, or DFA, and show that it is applicable to almost any secret key cryptosystem proposed so far in the open literature. Our DFA attack can use various fault models and various cryptanalytic techniques to recover the cryptographic secrets hidden in the tarn per-resistant device. In particular, we have demonstrated that under the same hardware fault model used by the Bellcore researchers, we can extract the full DES key from a sealed tamper-resistant DES encryptor by analyzing between 50 and 200 ciphertexts generated from unknown but related plaintexts. In the second part of the paper we develop techniques to identify the keys of completely unknown ciphers (such as Skipjack) sealed in tamper-resistant devices, and to reconstruct the complete specification of DES-like unknown ciphers. In the last part of the paper, we consider a different fault model, based on permanent hardware faults, and show that it can be used to break DES by analyzing a small number of ciphertexts generated from completely unknown and unrelated plaintexts.", 
    "editor": [
      {
        "familyName": "Kaliski", 
        "givenName": "Burton S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0052259", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-63384-6", 
        "978-3-540-69528-8"
      ], 
      "name": "Advances in Cryptology \u2014 CRYPTO '97", 
      "type": "Book"
    }, 
    "name": "Differential fault analysis of secret key cryptosystems", 
    "pagination": "513-525", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017540643"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0052259"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "539202b2a4d879aea0fc656f18b582238cb2cfd5429213c39b0ce86cc9f991d9"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0052259", 
      "https://app.dimensions.ai/details/publication/pub.1017540643"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68953_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2FBFb0052259"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0052259'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0052259'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0052259'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0052259'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      23 PREDICATES      29 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0052259 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Nc9003dcd379047509f0fa9417851d163
4 schema:citation sg:pub.10.1007/978-1-4613-9314-6
5 sg:pub.10.1007/bf00203965
6 https://app.dimensions.ai/details/publication/pub.1047747404
7 schema:datePublished 2006-05-17
8 schema:datePublishedReg 2006-05-17
9 schema:description In September 1996 Boneh, Demillo, and Lipton from Bellcore announced a new type of cryptanalytic attack which exploits computational errors to find cryptographic keys. Their attack is based on algebraic properties of modular arithmetic, and thus it is applicable only to public key cryptosystems such as RSA, and not to secret key algorithms such as the Data Encryption Standard (DES). In this paper, we describe a related attack, which we call Differential Fault Analysis, or DFA, and show that it is applicable to almost any secret key cryptosystem proposed so far in the open literature. Our DFA attack can use various fault models and various cryptanalytic techniques to recover the cryptographic secrets hidden in the tarn per-resistant device. In particular, we have demonstrated that under the same hardware fault model used by the Bellcore researchers, we can extract the full DES key from a sealed tamper-resistant DES encryptor by analyzing between 50 and 200 ciphertexts generated from unknown but related plaintexts. In the second part of the paper we develop techniques to identify the keys of completely unknown ciphers (such as Skipjack) sealed in tamper-resistant devices, and to reconstruct the complete specification of DES-like unknown ciphers. In the last part of the paper, we consider a different fault model, based on permanent hardware faults, and show that it can be used to break DES by analyzing a small number of ciphertexts generated from completely unknown and unrelated plaintexts.
10 schema:editor Nd3fc877e63424ba8992d852c544ff935
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf Nab3b69a751ea4230bdfcac7af5b82897
15 schema:name Differential fault analysis of secret key cryptosystems
16 schema:pagination 513-525
17 schema:productId N02e064ace0cc4ea4bf75f63266774a0a
18 N6280d3681ca146a6ad44e5a491920129
19 Na45b15416c1f45f89020b19ac539bd74
20 schema:publisher N0bf1a661488d4f04b4b3576f82c2f21b
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017540643
22 https://doi.org/10.1007/bfb0052259
23 schema:sdDatePublished 2019-04-16T08:56
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N4054b4bc1d4a4b14bcfdba8bc6edba29
26 schema:url https://link.springer.com/10.1007%2FBFb0052259
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N02e064ace0cc4ea4bf75f63266774a0a schema:name doi
31 schema:value 10.1007/bfb0052259
32 rdf:type schema:PropertyValue
33 N0bf1a661488d4f04b4b3576f82c2f21b schema:location Berlin, Heidelberg
34 schema:name Springer Berlin Heidelberg
35 rdf:type schema:Organisation
36 N1f7357cafcb24243a0056288fbe0e321 rdf:first sg:person.013052746407.28
37 rdf:rest rdf:nil
38 N4054b4bc1d4a4b14bcfdba8bc6edba29 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N6280d3681ca146a6ad44e5a491920129 schema:name dimensions_id
41 schema:value pub.1017540643
42 rdf:type schema:PropertyValue
43 N94fa5412bf5c47d8b22f4026f2a133b1 schema:familyName Kaliski
44 schema:givenName Burton S.
45 rdf:type schema:Person
46 Na45b15416c1f45f89020b19ac539bd74 schema:name readcube_id
47 schema:value 539202b2a4d879aea0fc656f18b582238cb2cfd5429213c39b0ce86cc9f991d9
48 rdf:type schema:PropertyValue
49 Nab3b69a751ea4230bdfcac7af5b82897 schema:isbn 978-3-540-63384-6
50 978-3-540-69528-8
51 schema:name Advances in Cryptology — CRYPTO '97
52 rdf:type schema:Book
53 Nc9003dcd379047509f0fa9417851d163 rdf:first sg:person.014332733635.97
54 rdf:rest N1f7357cafcb24243a0056288fbe0e321
55 Nd3fc877e63424ba8992d852c544ff935 rdf:first N94fa5412bf5c47d8b22f4026f2a133b1
56 rdf:rest rdf:nil
57 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
58 schema:name Information and Computing Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
61 schema:name Data Format
62 rdf:type schema:DefinedTerm
63 sg:person.013052746407.28 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
64 schema:familyName Shamir
65 schema:givenName Adi
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052746407.28
67 rdf:type schema:Person
68 sg:person.014332733635.97 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
69 schema:familyName Biham
70 schema:givenName Eli
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014332733635.97
72 rdf:type schema:Person
73 sg:pub.10.1007/978-1-4613-9314-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047747404
74 https://doi.org/10.1007/978-1-4613-9314-6
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf00203965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045432758
77 https://doi.org/10.1007/bf00203965
78 rdf:type schema:CreativeWork
79 https://app.dimensions.ai/details/publication/pub.1047747404 schema:CreativeWork
80 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
81 schema:name Applied Math. and Comp. Sci. Department, The Weizmann Institute of Science, 76100, Rehovot, Israel
82 rdf:type schema:Organization
83 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
84 schema:name Computer Science Department, Technion - Israel Institute of Technology, 32000, Haifa, Israel
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...