Solution differentiability for parametric nonlinear control problems with inequality constraints View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

Helmut Maurer , Hans Josef Pesch

ABSTRACT

This paper considers parametric nonlinear control problems subject to mixed control-state constraints. The data perturbations are modeled by a parameter p of a Banach space. Using recent second-order sufficient conditions (SSC) it is shown that the optimal solution and the adjoint multipliers are differentiable functions of the parameter. The proof blends numerical shooting techniques for solving the associated boundary value problem with theoretical methods for obtaining SSC. In a first step, a differentiable family of extremals for the underlying parametric boundary value problem is constructed by assuming the regularity of the shooting matrix. Optimality of this family of extremals can be established in a second step when SSC are imposed. More... »

PAGES

437-446

Book

TITLE

System Modelling and Optimization

ISBN

978-3-540-19893-2
978-3-540-39337-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0035492

DOI

http://dx.doi.org/10.1007/bfb0035492

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039098623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Numerische und instrumentelle Mathematik, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, Einsteinstrasse 62, 48149, M\u00fcnster, Germany", 
            "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurer", 
        "givenName": "Helmut", 
        "id": "sg:person.016170223221.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170223221.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Numerische und instrumentelle Mathematik, Westf\u00e4lische Wilhelms-Universit\u00e4t M\u00fcnster, Einsteinstrasse 62, 48149, M\u00fcnster, Germany", 
            "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "Hans Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "This paper considers parametric nonlinear control problems subject to mixed control-state constraints. The data perturbations are modeled by a parameter p of a Banach space. Using recent second-order sufficient conditions (SSC) it is shown that the optimal solution and the adjoint multipliers are differentiable functions of the parameter. The proof blends numerical shooting techniques for solving the associated boundary value problem with theoretical methods for obtaining SSC. In a first step, a differentiable family of extremals for the underlying parametric boundary value problem is constructed by assuming the regularity of the shooting matrix. Optimality of this family of extremals can be established in a second step when SSC are imposed.", 
    "editor": [
      {
        "familyName": "Henry", 
        "givenName": "Jacques", 
        "type": "Person"
      }, 
      {
        "familyName": "Yvon", 
        "givenName": "Jean-Pierre", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0035492", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-19893-2", 
        "978-3-540-39337-5"
      ], 
      "name": "System Modelling and Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "second-order sufficient condition", 
      "boundary value problem", 
      "control problem", 
      "value problem", 
      "mixed control-state constraints", 
      "parametric boundary value problem", 
      "Parametric nonlinear control problems", 
      "control-state constraints", 
      "nonlinear control problem", 
      "numerical shooting technique", 
      "family of extremals", 
      "Solution differentiability", 
      "Banach spaces", 
      "inequality constraints", 
      "shooting technique", 
      "differentiable family", 
      "sufficient conditions", 
      "differentiable functions", 
      "optimal solution", 
      "parameter p", 
      "data perturbation", 
      "theoretical methods", 
      "extremals", 
      "problem", 
      "differentiability", 
      "constraints", 
      "optimality", 
      "multipliers", 
      "second step", 
      "perturbations", 
      "regularity", 
      "space", 
      "solution", 
      "proof", 
      "matrix", 
      "parameters", 
      "first step", 
      "step", 
      "function", 
      "technique", 
      "conditions", 
      "family", 
      "paper", 
      "method"
    ], 
    "name": "Solution differentiability for parametric nonlinear control problems with inequality constraints", 
    "pagination": "437-446", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039098623"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0035492"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0035492", 
      "https://app.dimensions.ai/details/publication/pub.1039098623"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_365.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0035492"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0035492'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0035492'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0035492'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0035492'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0035492 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N5c030d229e5d4d5687681908a3ec6393
4 schema:datePublished 1994
5 schema:datePublishedReg 1994-01-01
6 schema:description This paper considers parametric nonlinear control problems subject to mixed control-state constraints. The data perturbations are modeled by a parameter p of a Banach space. Using recent second-order sufficient conditions (SSC) it is shown that the optimal solution and the adjoint multipliers are differentiable functions of the parameter. The proof blends numerical shooting techniques for solving the associated boundary value problem with theoretical methods for obtaining SSC. In a first step, a differentiable family of extremals for the underlying parametric boundary value problem is constructed by assuming the regularity of the shooting matrix. Optimality of this family of extremals can be established in a second step when SSC are imposed.
7 schema:editor Na7d574bd9d68469d94f0021e24ae1f55
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nf04980bb83c9440d9ea3de2c601ba928
11 schema:keywords Banach spaces
12 Parametric nonlinear control problems
13 Solution differentiability
14 boundary value problem
15 conditions
16 constraints
17 control problem
18 control-state constraints
19 data perturbation
20 differentiability
21 differentiable family
22 differentiable functions
23 extremals
24 family
25 family of extremals
26 first step
27 function
28 inequality constraints
29 matrix
30 method
31 mixed control-state constraints
32 multipliers
33 nonlinear control problem
34 numerical shooting technique
35 optimal solution
36 optimality
37 paper
38 parameter p
39 parameters
40 parametric boundary value problem
41 perturbations
42 problem
43 proof
44 regularity
45 second step
46 second-order sufficient condition
47 shooting technique
48 solution
49 space
50 step
51 sufficient conditions
52 technique
53 theoretical methods
54 value problem
55 schema:name Solution differentiability for parametric nonlinear control problems with inequality constraints
56 schema:pagination 437-446
57 schema:productId N5f86d11a5fe546d58db1aeb3e5c018a2
58 N63be676bd97842cc81ba19070d5d203a
59 schema:publisher Nb5e68088e09345c59c9c966e97db72b1
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039098623
61 https://doi.org/10.1007/bfb0035492
62 schema:sdDatePublished 2022-10-01T06:57
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N5bbe21c06d65495d943bc4eaa22224c2
65 schema:url https://doi.org/10.1007/bfb0035492
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N288d0440454e43dca36a9b999e1a6f4f schema:familyName Yvon
70 schema:givenName Jean-Pierre
71 rdf:type schema:Person
72 N5bbe21c06d65495d943bc4eaa22224c2 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N5c030d229e5d4d5687681908a3ec6393 rdf:first sg:person.016170223221.26
75 rdf:rest N8d2b89b9e8354de19807039307220d07
76 N5f86d11a5fe546d58db1aeb3e5c018a2 schema:name dimensions_id
77 schema:value pub.1039098623
78 rdf:type schema:PropertyValue
79 N63be676bd97842cc81ba19070d5d203a schema:name doi
80 schema:value 10.1007/bfb0035492
81 rdf:type schema:PropertyValue
82 N8b595b27e9bb47ccb59bfb72bac2e1b7 rdf:first N288d0440454e43dca36a9b999e1a6f4f
83 rdf:rest rdf:nil
84 N8d2b89b9e8354de19807039307220d07 rdf:first sg:person.014543723551.22
85 rdf:rest rdf:nil
86 Na7d574bd9d68469d94f0021e24ae1f55 rdf:first Necbeca7acf7748f385ecd89a953b02d0
87 rdf:rest N8b595b27e9bb47ccb59bfb72bac2e1b7
88 Nb5e68088e09345c59c9c966e97db72b1 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Necbeca7acf7748f385ecd89a953b02d0 schema:familyName Henry
91 schema:givenName Jacques
92 rdf:type schema:Person
93 Nf04980bb83c9440d9ea3de2c601ba928 schema:isbn 978-3-540-19893-2
94 978-3-540-39337-5
95 schema:name System Modelling and Optimization
96 rdf:type schema:Book
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
101 schema:name Applied Mathematics
102 rdf:type schema:DefinedTerm
103 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
104 schema:familyName Pesch
105 schema:givenName Hans Josef
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
107 rdf:type schema:Person
108 sg:person.016170223221.26 schema:affiliation grid-institutes:grid.6936.a
109 schema:familyName Maurer
110 schema:givenName Helmut
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170223221.26
112 rdf:type schema:Person
113 grid-institutes:grid.6936.a schema:alternateName Mathematisches Institut, Technische Universität München, Arcisstrasse 21, 80333, München, Germany
114 schema:name Institut für Numerische und instrumentelle Mathematik, Westfälische Wilhelms-Universität Münster, Einsteinstrasse 62, 48149, Münster, Germany
115 Mathematisches Institut, Technische Universität München, Arcisstrasse 21, 80333, München, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...