Database support for problematic knowledge View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005-06-26

AUTHORS

W. Kießling , H. Thöne , U. Güntzer

ABSTRACT

Recently substantial research efforts have been spent on extending database technology in various ways towards a better support of applications of the nineties. In contrast, the tough problems of adding the right uncertainty reasoning capabilities have received relatively modest attention despite evident importance. Among the many faces of uncertainty we focus on what we call problematic knowledge, which is — e. g. — inherent in what-if decision scenarios. Based on a rule calculus with probability intervals introduced lately [GKT 91] we show how to do rule chaining under independence and how to add comparative probability. Also a method for reasoning with uncertain facts, founded on the notions of maximal context and detachment, is given. Full database support can be given to the calculus. We discuss some aspects of the optimization problem and how to deliver uncertainty reasoning to the user's application by interoperability in a heterogeneous database environment. More... »

PAGES

421-436

References to SciGraph publications

  • 1990. A Framework for Reasoning with Defaults in KNOWLEDGE REPRESENTATION AND DEFEASIBLE REASONING
  • 1991. Uncertainty and Vagueness in Knowledge Based Systems, Numerical Methods in NONE
  • Book

    TITLE

    Advances in Database Technology — EDBT '92

    ISBN

    3-540-55270-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bfb0032446

    DOI

    http://dx.doi.org/10.1007/bfb0032446

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014696697


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institut f\u00fcr Informatik, Technische Universit\u00e4t M\u00fcnchen, Orleansstr. 34, 8000, M\u00fcnchen 80, FRG"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kie\u00dfling", 
            "givenName": "W.", 
            "id": "sg:person.07355710125.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of T\u00fcbingen", 
              "id": "https://www.grid.ac/institutes/grid.10392.39", 
              "name": [
                "Wilhelm-Schickard-Institut, Universit\u00e4t T\u00fcbingen, Sand 13, 7400, T\u00fcbingen 1, FRG"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Th\u00f6ne", 
            "givenName": "H.", 
            "id": "sg:person.015345233121.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345233121.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of T\u00fcbingen", 
              "id": "https://www.grid.ac/institutes/grid.10392.39", 
              "name": [
                "Wilhelm-Schickard-Institut, Universit\u00e4t T\u00fcbingen, Sand 13, 7400, T\u00fcbingen 1, FRG"
              ], 
              "type": "Organization"
            }, 
            "familyName": "G\u00fcntzer", 
            "givenName": "U.", 
            "id": "sg:person.013324511711.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-0-444-70058-2.50009-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011574110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/26.3.255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011913898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0553-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022878510", 
              "https://doi.org/10.1007/978-94-009-0553-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0553-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022878510", 
              "https://doi.org/10.1007/978-94-009-0553-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1031088058", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-76702-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031088058", 
              "https://doi.org/10.1007/978-3-642-76702-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-76702-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031088058", 
              "https://doi.org/10.1007/978-3-642-76702-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(80)90014-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046262502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(80)90014-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046262502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/115790.115795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098993277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/115790.115815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098993291"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-06-26", 
        "datePublishedReg": "2005-06-26", 
        "description": "Recently substantial research efforts have been spent on extending database technology in various ways towards a better support of applications of the nineties. In contrast, the tough problems of adding the right uncertainty reasoning capabilities have received relatively modest attention despite evident importance. Among the many faces of uncertainty we focus on what we call problematic knowledge, which is \u2014 e. g. \u2014 inherent in what-if decision scenarios. Based on a rule calculus with probability intervals introduced lately [GKT 91] we show how to do rule chaining under independence and how to add comparative probability. Also a method for reasoning with uncertain facts, founded on the notions of maximal context and detachment, is given. Full database support can be given to the calculus. We discuss some aspects of the optimization problem and how to deliver uncertainty reasoning to the user's application by interoperability in a heterogeneous database environment.", 
        "editor": [
          {
            "familyName": "Pirotte", 
            "givenName": "Alain", 
            "type": "Person"
          }, 
          {
            "familyName": "Delobel", 
            "givenName": "Claude", 
            "type": "Person"
          }, 
          {
            "familyName": "Gottlob", 
            "givenName": "Goerg", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/bfb0032446", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "3-540-55270-7"
          ], 
          "name": "Advances in Database Technology \u2014 EDBT '92", 
          "type": "Book"
        }, 
        "name": "Database support for problematic knowledge", 
        "pagination": "421-436", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014696697"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bfb0032446"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "46049999eb6ce79c29e844128c2ee57a10b007c789bde23cbfa4d15eedacc18f"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin/Heidelberg", 
          "name": "Springer-Verlag", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/bfb0032446", 
          "https://app.dimensions.ai/details/publication/pub.1014696697"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56164_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2FBFb0032446"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0032446'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0032446'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0032446'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0032446'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      23 PREDICATES      34 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bfb0032446 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N9436c012b1a341c3bbf868af74134946
    4 schema:citation sg:pub.10.1007/978-3-642-76702-9
    5 sg:pub.10.1007/978-94-009-0553-5_3
    6 https://app.dimensions.ai/details/publication/pub.1031088058
    7 https://doi.org/10.1016/0004-3702(80)90014-4
    8 https://doi.org/10.1016/b978-0-444-70058-2.50009-7
    9 https://doi.org/10.1093/comjnl/26.3.255
    10 https://doi.org/10.1145/115790.115795
    11 https://doi.org/10.1145/115790.115815
    12 schema:datePublished 2005-06-26
    13 schema:datePublishedReg 2005-06-26
    14 schema:description Recently substantial research efforts have been spent on extending database technology in various ways towards a better support of applications of the nineties. In contrast, the tough problems of adding the right uncertainty reasoning capabilities have received relatively modest attention despite evident importance. Among the many faces of uncertainty we focus on what we call problematic knowledge, which is — e. g. — inherent in what-if decision scenarios. Based on a rule calculus with probability intervals introduced lately [GKT 91] we show how to do rule chaining under independence and how to add comparative probability. Also a method for reasoning with uncertain facts, founded on the notions of maximal context and detachment, is given. Full database support can be given to the calculus. We discuss some aspects of the optimization problem and how to deliver uncertainty reasoning to the user's application by interoperability in a heterogeneous database environment.
    15 schema:editor Ndd558f9e237a47ab8f7803f635394831
    16 schema:genre chapter
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf Nf7e38ec34c2e4362becd4bee8358706c
    20 schema:name Database support for problematic knowledge
    21 schema:pagination 421-436
    22 schema:productId N00b3d48c8b5140329bded0d6ca967e5c
    23 Nc001e04be72c4fc4bd82b9253d5589a3
    24 Ne54823f419064d408f6491aeaa8e1f9b
    25 schema:publisher Nf7d13242d59d492ba52821c7e27ac481
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014696697
    27 https://doi.org/10.1007/bfb0032446
    28 schema:sdDatePublished 2019-04-16T09:52
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N7287fc115f844060a8bc1ab730188fae
    31 schema:url https://link.springer.com/10.1007%2FBFb0032446
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset chapters
    34 rdf:type schema:Chapter
    35 N00b3d48c8b5140329bded0d6ca967e5c schema:name doi
    36 schema:value 10.1007/bfb0032446
    37 rdf:type schema:PropertyValue
    38 N04ebb917ea9045a198da6d66477506bd schema:name Institut für Informatik, Technische Universität München, Orleansstr. 34, 8000, München 80, FRG
    39 rdf:type schema:Organization
    40 N1798de4c53eb46d28d3ff3c0a69ee673 rdf:first sg:person.013324511711.75
    41 rdf:rest rdf:nil
    42 N5d7a9b56fad643bf8eec461d09ceb927 schema:familyName Delobel
    43 schema:givenName Claude
    44 rdf:type schema:Person
    45 N7287fc115f844060a8bc1ab730188fae schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N7909b6be21a6425782f45ab76e989ac1 rdf:first N5d7a9b56fad643bf8eec461d09ceb927
    48 rdf:rest Ndf83967d495e40b2a6111c0c14881bea
    49 N9436c012b1a341c3bbf868af74134946 rdf:first sg:person.07355710125.73
    50 rdf:rest Ndc506a840f644c0a88cc872513d46c42
    51 Nbc5b688838314653b78b5e9293aaf93c schema:familyName Pirotte
    52 schema:givenName Alain
    53 rdf:type schema:Person
    54 Nc001e04be72c4fc4bd82b9253d5589a3 schema:name readcube_id
    55 schema:value 46049999eb6ce79c29e844128c2ee57a10b007c789bde23cbfa4d15eedacc18f
    56 rdf:type schema:PropertyValue
    57 Nc0c42ad95bb64fb5bb8e469768407c15 schema:familyName Gottlob
    58 schema:givenName Goerg
    59 rdf:type schema:Person
    60 Ndc506a840f644c0a88cc872513d46c42 rdf:first sg:person.015345233121.45
    61 rdf:rest N1798de4c53eb46d28d3ff3c0a69ee673
    62 Ndd558f9e237a47ab8f7803f635394831 rdf:first Nbc5b688838314653b78b5e9293aaf93c
    63 rdf:rest N7909b6be21a6425782f45ab76e989ac1
    64 Ndf83967d495e40b2a6111c0c14881bea rdf:first Nc0c42ad95bb64fb5bb8e469768407c15
    65 rdf:rest rdf:nil
    66 Ne54823f419064d408f6491aeaa8e1f9b schema:name dimensions_id
    67 schema:value pub.1014696697
    68 rdf:type schema:PropertyValue
    69 Nf7d13242d59d492ba52821c7e27ac481 schema:location Berlin/Heidelberg
    70 schema:name Springer-Verlag
    71 rdf:type schema:Organisation
    72 Nf7e38ec34c2e4362becd4bee8358706c schema:isbn 3-540-55270-7
    73 schema:name Advances in Database Technology — EDBT '92
    74 rdf:type schema:Book
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Information Systems
    80 rdf:type schema:DefinedTerm
    81 sg:person.013324511711.75 schema:affiliation https://www.grid.ac/institutes/grid.10392.39
    82 schema:familyName Güntzer
    83 schema:givenName U.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75
    85 rdf:type schema:Person
    86 sg:person.015345233121.45 schema:affiliation https://www.grid.ac/institutes/grid.10392.39
    87 schema:familyName Thöne
    88 schema:givenName H.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345233121.45
    90 rdf:type schema:Person
    91 sg:person.07355710125.73 schema:affiliation N04ebb917ea9045a198da6d66477506bd
    92 schema:familyName Kießling
    93 schema:givenName W.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73
    95 rdf:type schema:Person
    96 sg:pub.10.1007/978-3-642-76702-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031088058
    97 https://doi.org/10.1007/978-3-642-76702-9
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-94-009-0553-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022878510
    100 https://doi.org/10.1007/978-94-009-0553-5_3
    101 rdf:type schema:CreativeWork
    102 https://app.dimensions.ai/details/publication/pub.1031088058 schema:CreativeWork
    103 https://doi.org/10.1016/0004-3702(80)90014-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046262502
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/b978-0-444-70058-2.50009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011574110
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1093/comjnl/26.3.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011913898
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1145/115790.115795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098993277
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1145/115790.115815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098993291
    112 rdf:type schema:CreativeWork
    113 https://www.grid.ac/institutes/grid.10392.39 schema:alternateName University of Tübingen
    114 schema:name Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13, 7400, Tübingen 1, FRG
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...