The importance of the left merge operator in process algebras View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

Faron Moller

ABSTRACT

In this paper, we examine equational axiomatisations for PA, the process algebra of Bergstra and Klop, which is a simple subset of their full language ACP. The language PA has two combinators for concurrent execution: the usual full merge operator ∥ and the more esoteric left merge operator ⌊. Though this latter combinator is somewhat semantically unusual, we demonstrate its importance by proving that, whereas a finite sound and complete equational theory exists for PA, no such finite theory can exist for PA in the absence of the left merge operator. More... »

PAGES

752-764

Book

TITLE

Automata, Languages and Programming

ISBN

3-540-52826-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0032072

DOI

http://dx.doi.org/10.1007/bfb0032072

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035812790


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Department of Computer Science, University of Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moller", 
        "givenName": "Faron", 
        "id": "sg:person.010425236217.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425236217.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "In this paper, we examine equational axiomatisations for PA, the process algebra of Bergstra and Klop, which is a simple subset of their full language ACP. The language PA has two combinators for concurrent execution: the usual full merge operator \u2225 and the more esoteric left merge operator \u230a. Though this latter combinator is somewhat semantically unusual, we demonstrate its importance by proving that, whereas a finite sound and complete equational theory exists for PA, no such finite theory can exist for PA in the absence of the left merge operator.", 
    "editor": [
      {
        "familyName": "Paterson", 
        "givenName": "Michael S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0032072", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-540-52826-1"
      ], 
      "name": "Automata, Languages and Programming", 
      "type": "Book"
    }, 
    "keywords": [
      "process algebra", 
      "finite theory", 
      "complete equational theory", 
      "merge operator", 
      "equational theory", 
      "equational axiomatisation", 
      "algebra", 
      "operators", 
      "simple subset", 
      "theory", 
      "Bergstra", 
      "Klop", 
      "axiomatisation", 
      "combinators", 
      "concurrent execution", 
      "subset", 
      "importance", 
      "execution", 
      "sound", 
      "PA", 
      "absence", 
      "ACP", 
      "paper"
    ], 
    "name": "The importance of the left merge operator in process algebras", 
    "pagination": "752-764", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035812790"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0032072"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0032072", 
      "https://app.dimensions.ai/details/publication/pub.1035812790"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_407.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0032072"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0032072'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0032072'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0032072'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0032072'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      23 PREDICATES      49 URIs      42 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0032072 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N44ed1d7764954330b70c60598dce3acb
4 schema:datePublished 1990
5 schema:datePublishedReg 1990-01-01
6 schema:description In this paper, we examine equational axiomatisations for PA, the process algebra of Bergstra and Klop, which is a simple subset of their full language ACP. The language PA has two combinators for concurrent execution: the usual full merge operator ∥ and the more esoteric left merge operator ⌊. Though this latter combinator is somewhat semantically unusual, we demonstrate its importance by proving that, whereas a finite sound and complete equational theory exists for PA, no such finite theory can exist for PA in the absence of the left merge operator.
7 schema:editor N3b350ff20c5945a8b79c4caf48748d3c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne7810b26c7c34d7f9c7a15b35c78a140
12 schema:keywords ACP
13 Bergstra
14 Klop
15 PA
16 absence
17 algebra
18 axiomatisation
19 combinators
20 complete equational theory
21 concurrent execution
22 equational axiomatisation
23 equational theory
24 execution
25 finite theory
26 importance
27 merge operator
28 operators
29 paper
30 process algebra
31 simple subset
32 sound
33 subset
34 theory
35 schema:name The importance of the left merge operator in process algebras
36 schema:pagination 752-764
37 schema:productId Nc948453260e0462aaca2ba9593faf1ea
38 Nd4919e21012d47579e7cf729deafce86
39 schema:publisher N4eceb2bf175b4d77a4e4600379a5b2ae
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035812790
41 https://doi.org/10.1007/bfb0032072
42 schema:sdDatePublished 2022-05-20T07:47
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nc57c02bd969c46a6970d047ef73e0970
45 schema:url https://doi.org/10.1007/bfb0032072
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N3b350ff20c5945a8b79c4caf48748d3c rdf:first N8814286785de4527a044d29267de3bc2
50 rdf:rest rdf:nil
51 N44ed1d7764954330b70c60598dce3acb rdf:first sg:person.010425236217.29
52 rdf:rest rdf:nil
53 N4eceb2bf175b4d77a4e4600379a5b2ae schema:name Springer Nature
54 rdf:type schema:Organisation
55 N8814286785de4527a044d29267de3bc2 schema:familyName Paterson
56 schema:givenName Michael S.
57 rdf:type schema:Person
58 Nc57c02bd969c46a6970d047ef73e0970 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nc948453260e0462aaca2ba9593faf1ea schema:name doi
61 schema:value 10.1007/bfb0032072
62 rdf:type schema:PropertyValue
63 Nd4919e21012d47579e7cf729deafce86 schema:name dimensions_id
64 schema:value pub.1035812790
65 rdf:type schema:PropertyValue
66 Ne7810b26c7c34d7f9c7a15b35c78a140 schema:isbn 3-540-52826-1
67 schema:name Automata, Languages and Programming
68 rdf:type schema:Book
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:person.010425236217.29 schema:affiliation grid-institutes:grid.4305.2
76 schema:familyName Moller
77 schema:givenName Faron
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425236217.29
79 rdf:type schema:Person
80 grid-institutes:grid.4305.2 schema:alternateName Department of Computer Science, University of Edinburgh, UK
81 schema:name Department of Computer Science, University of Edinburgh, UK
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...