The quadric reference surface: Applications in registering views of complex 3D objects View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1994

AUTHORS

Amnon Shashua , Sebastian Toelg

ABSTRACT

The theoretical component of this work involves the following question: given any two views of some unknown textured opaque quadric surface in 3D, is there a finite number of corresponding points across the two views that uniquely determine all other correspondences coming from points on the quadric? A constructive answer to this question is then used to propose a transformation, we call a nominal quadratic transformation, that can be used in practice to facilitate the process of achieving full point-to-point correspondence between two grey-level images of the same (arbitrary) object. More... »

PAGES

407-416

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0028372

DOI

http://dx.doi.org/10.1007/bfb0028372

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052672229


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Artificial Intelligence Laboratory Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, MA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Artificial Intelligence Laboratory Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shashua", 
        "givenName": "Amnon", 
        "id": "sg:person.011111040313.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111040313.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Vision Laboratory Center for Automation Research, University of Maryland at College Park, 20742, College Park, MD", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Artificial Intelligence Laboratory Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, MA", 
            "Computer Vision Laboratory Center for Automation Research, University of Maryland at College Park, 20742, College Park, MD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toelg", 
        "givenName": "Sebastian", 
        "id": "sg:person.016325427132.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325427132.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "The theoretical component of this work involves the following question: given any two views of some unknown textured opaque quadric surface in 3D, is there a finite number of corresponding points across the two views that uniquely determine all other correspondences coming from points on the quadric? A constructive answer to this question is then used to propose a transformation, we call a nominal quadratic transformation, that can be used in practice to facilitate the process of achieving full point-to-point correspondence between two grey-level images of the same (arbitrary) object.", 
    "editor": [
      {
        "familyName": "Eklundh", 
        "givenName": "Jan-Olof", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0028372", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-57957-1", 
        "978-3-540-48400-4"
      ], 
      "name": "Computer Vision \u2014 ECCV '94", 
      "type": "Book"
    }, 
    "keywords": [
      "finite number", 
      "gray-level images", 
      "complex 3D objects", 
      "quadratic transformation", 
      "quadric surfaces", 
      "point correspondences", 
      "corresponding points", 
      "same object", 
      "constructive answers", 
      "objects", 
      "reference surface", 
      "quadrics", 
      "correspondence", 
      "point", 
      "full points", 
      "images", 
      "transformation", 
      "view", 
      "applications", 
      "theoretical components", 
      "answers", 
      "work", 
      "surface", 
      "number", 
      "process", 
      "components", 
      "questions", 
      "practice"
    ], 
    "name": "The quadric reference surface: Applications in registering views of complex 3D objects", 
    "pagination": "407-416", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052672229"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0028372"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0028372", 
      "https://app.dimensions.ai/details/publication/pub.1052672229"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_118.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0028372"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0028372'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0028372'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0028372'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0028372'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      22 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0028372 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7243df31bfdc4fd6acc6142e3230331b
4 schema:datePublished 1994
5 schema:datePublishedReg 1994-01-01
6 schema:description The theoretical component of this work involves the following question: given any two views of some unknown textured opaque quadric surface in 3D, is there a finite number of corresponding points across the two views that uniquely determine all other correspondences coming from points on the quadric? A constructive answer to this question is then used to propose a transformation, we call a nominal quadratic transformation, that can be used in practice to facilitate the process of achieving full point-to-point correspondence between two grey-level images of the same (arbitrary) object.
7 schema:editor N8af75ce63f454914847dbe4511487edd
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N65472cabb2794d508860ba3a6773af9a
11 schema:keywords answers
12 applications
13 complex 3D objects
14 components
15 constructive answers
16 correspondence
17 corresponding points
18 finite number
19 full points
20 gray-level images
21 images
22 number
23 objects
24 point
25 point correspondences
26 practice
27 process
28 quadratic transformation
29 quadric surfaces
30 quadrics
31 questions
32 reference surface
33 same object
34 surface
35 theoretical components
36 transformation
37 view
38 work
39 schema:name The quadric reference surface: Applications in registering views of complex 3D objects
40 schema:pagination 407-416
41 schema:productId N2d75f655314a40a3b9fdf8c33ed995e1
42 Nadf4b7af02c5476ea1320295ad1dcf9e
43 schema:publisher N846acda3bba84322a6ddf5e4ad2af628
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052672229
45 https://doi.org/10.1007/bfb0028372
46 schema:sdDatePublished 2022-12-01T06:46
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nc014566f8221414f866e8be246f4deb5
49 schema:url https://doi.org/10.1007/bfb0028372
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N2d75f655314a40a3b9fdf8c33ed995e1 schema:name dimensions_id
54 schema:value pub.1052672229
55 rdf:type schema:PropertyValue
56 N57a95a400654474e9ef00ddb41037341 schema:familyName Eklundh
57 schema:givenName Jan-Olof
58 rdf:type schema:Person
59 N65472cabb2794d508860ba3a6773af9a schema:isbn 978-3-540-48400-4
60 978-3-540-57957-1
61 schema:name Computer Vision — ECCV '94
62 rdf:type schema:Book
63 N7243df31bfdc4fd6acc6142e3230331b rdf:first sg:person.011111040313.12
64 rdf:rest N9964e07cc290466e9a4bf035ba7a0a5f
65 N846acda3bba84322a6ddf5e4ad2af628 schema:name Springer Nature
66 rdf:type schema:Organisation
67 N8af75ce63f454914847dbe4511487edd rdf:first N57a95a400654474e9ef00ddb41037341
68 rdf:rest rdf:nil
69 N9964e07cc290466e9a4bf035ba7a0a5f rdf:first sg:person.016325427132.87
70 rdf:rest rdf:nil
71 Nadf4b7af02c5476ea1320295ad1dcf9e schema:name doi
72 schema:value 10.1007/bfb0028372
73 rdf:type schema:PropertyValue
74 Nc014566f8221414f866e8be246f4deb5 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:person.011111040313.12 schema:affiliation grid-institutes:grid.116068.8
83 schema:familyName Shashua
84 schema:givenName Amnon
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111040313.12
86 rdf:type schema:Person
87 sg:person.016325427132.87 schema:affiliation grid-institutes:grid.164295.d
88 schema:familyName Toelg
89 schema:givenName Sebastian
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325427132.87
91 rdf:type schema:Person
92 grid-institutes:grid.116068.8 schema:alternateName Artificial Intelligence Laboratory Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, MA
93 schema:name Artificial Intelligence Laboratory Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, MA
94 rdf:type schema:Organization
95 grid-institutes:grid.164295.d schema:alternateName Computer Vision Laboratory Center for Automation Research, University of Maryland at College Park, 20742, College Park, MD
96 schema:name Artificial Intelligence Laboratory Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, MA
97 Computer Vision Laboratory Center for Automation Research, University of Maryland at College Park, 20742, College Park, MD
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...