Telephone network traffic overloading diagnosis and evolutionary computation techniques View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

Isabelle Servet , Louise Travé-Massuyès , Daniel Stern

ABSTRACT

Traffic supervision in telephone networks is a task which needs to determine streams responsible for call losses in a network by comparing their traffic values to nominal values. However, stream traffic values are not measured by the on-line data acquisition system and, hence, have to be computed. We perform this computation by inverting an approximate knowledge based model of stream propagation in circuit-switched networks. This inversion is computed thanks to three evolutionary computation techniques (multiple restart hill-climbing, population-based incremental learning and genetic algorithms) for which both a binary version and a real variant have been experimented with several fitness measures. The final results first point out how the fitness measure choice can impact on their quality. They also show that, in this case, real variants of the algorithms give significantly better results than binary ones. More... »

PAGES

137-144

Book

TITLE

Artificial Evolution

ISBN

978-3-540-64169-8
978-3-540-69698-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0026596

DOI

http://dx.doi.org/10.1007/bfb0026596

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035772254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "LAAS/CNRS 7, avenue Colonel Roche, F-31077\u00a0Toulouse Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Servet", 
        "givenName": "Isabelle", 
        "id": "sg:person.014537053663.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537053663.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LAAS/CNRS 7, avenue Colonel Roche, F-31077\u00a0Toulouse Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trav\u00e9-Massuy\u00e8s", 
        "givenName": "Louise", 
        "id": "sg:person.016625001355.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016625001355.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CNET 38-40, rue du G\u00e9n\u00e9ral Leclerc, F-92131\u00a0Issy-les-Moulineaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stern", 
        "givenName": "Daniel", 
        "id": "sg:person.013725255324.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725255324.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Traffic supervision in telephone networks is a task which needs to determine streams responsible for call losses in a network by comparing their traffic values to nominal values. However, stream traffic values are not measured by the on-line data acquisition system and, hence, have to be computed. We perform this computation by inverting an approximate knowledge based model of stream propagation in circuit-switched networks. This inversion is computed thanks to three evolutionary computation techniques (multiple restart hill-climbing, population-based incremental learning and genetic algorithms) for which both a binary version and a real variant have been experimented with several fitness measures. The final results first point out how the fitness measure choice can impact on their quality. They also show that, in this case, real variants of the algorithms give significantly better results than binary ones.", 
    "editor": [
      {
        "familyName": "Hao", 
        "givenName": "Jin-Kao", 
        "type": "Person"
      }, 
      {
        "familyName": "Lutton", 
        "givenName": "Evelyne", 
        "type": "Person"
      }, 
      {
        "familyName": "Ronald", 
        "givenName": "Edmund", 
        "type": "Person"
      }, 
      {
        "familyName": "Schoenauer", 
        "givenName": "Marc", 
        "type": "Person"
      }, 
      {
        "familyName": "Snyers", 
        "givenName": "Dominique", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0026596", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-64169-8", 
        "978-3-540-69698-8"
      ], 
      "name": "Artificial Evolution", 
      "type": "Book"
    }, 
    "name": "Telephone network traffic overloading diagnosis and evolutionary computation techniques", 
    "pagination": "137-144", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0026596"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa67fffe7cbffaf67609da514b7118f85a1a3e781d68df02af623472edaafcff"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035772254"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0026596", 
      "https://app.dimensions.ai/details/publication/pub.1035772254"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000061.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0026596"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0026596'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0026596'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0026596'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0026596'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0026596 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nd8e8c59ec63246e2b766b3cdbe72879c
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description Traffic supervision in telephone networks is a task which needs to determine streams responsible for call losses in a network by comparing their traffic values to nominal values. However, stream traffic values are not measured by the on-line data acquisition system and, hence, have to be computed. We perform this computation by inverting an approximate knowledge based model of stream propagation in circuit-switched networks. This inversion is computed thanks to three evolutionary computation techniques (multiple restart hill-climbing, population-based incremental learning and genetic algorithms) for which both a binary version and a real variant have been experimented with several fitness measures. The final results first point out how the fitness measure choice can impact on their quality. They also show that, in this case, real variants of the algorithms give significantly better results than binary ones.
7 schema:editor Nd49e5e3b8b144ea09a8be9d3e26191e6
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N647629bedb0a43e1b843118be6b695ff
12 schema:name Telephone network traffic overloading diagnosis and evolutionary computation techniques
13 schema:pagination 137-144
14 schema:productId N227992a06616409db532d2dcfaf3bcc2
15 N59bacf3f1f2142119050396435e8ac1a
16 Nd2b5d7a52d2c4cf48cf168e42759ae6b
17 schema:publisher N6483851504434974aa9b239d540cd88e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035772254
19 https://doi.org/10.1007/bfb0026596
20 schema:sdDatePublished 2019-04-15T18:57
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N829bf68edcc1459e93c681253775edce
23 schema:url http://link.springer.com/10.1007/BFb0026596
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N115ca19b51244f9bbd44080af2477c65 schema:familyName Snyers
28 schema:givenName Dominique
29 rdf:type schema:Person
30 N15ddecc19ec54bf9a971f349bc6f9c39 schema:name LAAS/CNRS 7, avenue Colonel Roche, F-31077 Toulouse Cedex, France
31 rdf:type schema:Organization
32 N227992a06616409db532d2dcfaf3bcc2 schema:name dimensions_id
33 schema:value pub.1035772254
34 rdf:type schema:PropertyValue
35 N2c669b5e62e4429ea9b8db90ac11f477 rdf:first sg:person.016625001355.54
36 rdf:rest Nde1fe6f45a8d4057927079ef4e64dc89
37 N4902dbaa086e4f848801353572cc516d schema:familyName Hao
38 schema:givenName Jin-Kao
39 rdf:type schema:Person
40 N59bacf3f1f2142119050396435e8ac1a schema:name readcube_id
41 schema:value aa67fffe7cbffaf67609da514b7118f85a1a3e781d68df02af623472edaafcff
42 rdf:type schema:PropertyValue
43 N647629bedb0a43e1b843118be6b695ff schema:isbn 978-3-540-64169-8
44 978-3-540-69698-8
45 schema:name Artificial Evolution
46 rdf:type schema:Book
47 N6483851504434974aa9b239d540cd88e schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N6682ed2de0e1414c83f47f02d8422da4 rdf:first Nec1039694886496196fbe335160d4441
51 rdf:rest Nff398277cb374f1b815d1bed5592e5b0
52 N6eb31af4b9d54437a32a96919eb31cf6 rdf:first N115ca19b51244f9bbd44080af2477c65
53 rdf:rest rdf:nil
54 N829bf68edcc1459e93c681253775edce schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Na5aacce7675e41a5a923f6e5e891dc40 schema:name CNET 38-40, rue du Général Leclerc, F-92131 Issy-les-Moulineaux, France
57 rdf:type schema:Organization
58 Nc88fb36c7e3a479fa26452e0f2d30d9a schema:name LAAS/CNRS 7, avenue Colonel Roche, F-31077 Toulouse Cedex, France
59 rdf:type schema:Organization
60 Nd2b5d7a52d2c4cf48cf168e42759ae6b schema:name doi
61 schema:value 10.1007/bfb0026596
62 rdf:type schema:PropertyValue
63 Nd49e5e3b8b144ea09a8be9d3e26191e6 rdf:first N4902dbaa086e4f848801353572cc516d
64 rdf:rest Ne7184a7a5c274c46a672c9ed1e3e675b
65 Nd8e8c59ec63246e2b766b3cdbe72879c rdf:first sg:person.014537053663.43
66 rdf:rest N2c669b5e62e4429ea9b8db90ac11f477
67 Nde0f32211e1b4f8fb736fa8c1f519a78 schema:familyName Schoenauer
68 schema:givenName Marc
69 rdf:type schema:Person
70 Nde1fe6f45a8d4057927079ef4e64dc89 rdf:first sg:person.013725255324.84
71 rdf:rest rdf:nil
72 Nded99a0185ed43f691e6db02b839b1c6 schema:familyName Lutton
73 schema:givenName Evelyne
74 rdf:type schema:Person
75 Ne7184a7a5c274c46a672c9ed1e3e675b rdf:first Nded99a0185ed43f691e6db02b839b1c6
76 rdf:rest N6682ed2de0e1414c83f47f02d8422da4
77 Nec1039694886496196fbe335160d4441 schema:familyName Ronald
78 schema:givenName Edmund
79 rdf:type schema:Person
80 Nff398277cb374f1b815d1bed5592e5b0 rdf:first Nde0f32211e1b4f8fb736fa8c1f519a78
81 rdf:rest N6eb31af4b9d54437a32a96919eb31cf6
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
86 schema:name Computation Theory and Mathematics
87 rdf:type schema:DefinedTerm
88 sg:person.013725255324.84 schema:affiliation Na5aacce7675e41a5a923f6e5e891dc40
89 schema:familyName Stern
90 schema:givenName Daniel
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725255324.84
92 rdf:type schema:Person
93 sg:person.014537053663.43 schema:affiliation N15ddecc19ec54bf9a971f349bc6f9c39
94 schema:familyName Servet
95 schema:givenName Isabelle
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537053663.43
97 rdf:type schema:Person
98 sg:person.016625001355.54 schema:affiliation Nc88fb36c7e3a479fa26452e0f2d30d9a
99 schema:familyName Travé-Massuyès
100 schema:givenName Louise
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016625001355.54
102 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...