Classical quantization conditions for a dynamical system with stochastic behavior? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1979

AUTHORS

Martin C. Gutzwiller

ABSTRACT

The connection between classical and quantum mechanics is poorly understood when the classical trajectories show stochastic behavior. The author's method, based on Green's function, is reviewed. The importance of the periodic orbits for finding the (approximate) energy eigenvalues is emphasized. The anisotropic Kepler problem is discussed as an ergodic system where the (approximate) quantization can be carried out on the basis of classical mechanics. More... »

PAGES

316-325

Book

TITLE

Stochastic Behavior in Classical and Quantum Hamiltonian Systems

ISBN

3-540-09120-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0021755

DOI

http://dx.doi.org/10.1007/bfb0021755

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009010900


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research Center, 10598, Yorktown Heights, New York", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM Research Center, 10598, Yorktown Heights, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutzwiller", 
        "givenName": "Martin C.", 
        "id": "sg:person.07737020712.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737020712.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1979", 
    "datePublishedReg": "1979-01-01", 
    "description": "The connection between classical and quantum mechanics is poorly understood when the classical trajectories show stochastic behavior. The author's method, based on Green's function, is reviewed. The importance of the periodic orbits for finding the (approximate) energy eigenvalues is emphasized. The anisotropic Kepler problem is discussed as an ergodic system where the (approximate) quantization can be carried out on the basis of classical mechanics.", 
    "editor": [
      {
        "familyName": "Casati", 
        "givenName": "Giulio", 
        "type": "Person"
      }, 
      {
        "familyName": "Ford", 
        "givenName": "Joseph", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0021755", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-540-09120-3"
      ], 
      "name": "Stochastic Behavior in Classical and Quantum Hamiltonian Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum mechanics", 
      "classical trajectories", 
      "classical mechanics", 
      "energy eigenvalues", 
      "quantization condition", 
      "Green's function", 
      "ergodic systems", 
      "Kepler problem", 
      "mechanics", 
      "periodic orbits", 
      "orbit", 
      "anisotropic Kepler problem", 
      "stochastic behavior", 
      "quantization", 
      "dynamical systems", 
      "system", 
      "function", 
      "trajectories", 
      "behavior", 
      "method", 
      "eigenvalues", 
      "conditions", 
      "basis", 
      "connection", 
      "importance", 
      "authors' method", 
      "problem"
    ], 
    "name": "Classical quantization conditions for a dynamical system with stochastic behavior?", 
    "pagination": "316-325", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009010900"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0021755"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0021755", 
      "https://app.dimensions.ai/details/publication/pub.1009010900"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_286.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0021755"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0021755'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0021755'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0021755'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0021755'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      22 PREDICATES      52 URIs      45 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0021755 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 schema:author N744221b6d75a4a888e2e26099e63d6d3
4 schema:datePublished 1979
5 schema:datePublishedReg 1979-01-01
6 schema:description The connection between classical and quantum mechanics is poorly understood when the classical trajectories show stochastic behavior. The author's method, based on Green's function, is reviewed. The importance of the periodic orbits for finding the (approximate) energy eigenvalues is emphasized. The anisotropic Kepler problem is discussed as an ergodic system where the (approximate) quantization can be carried out on the basis of classical mechanics.
7 schema:editor Nbfb82e411dfd4491969245c9b7cb55fa
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne9aae3a0e9244808ab1497e087e3ad69
11 schema:keywords Green's function
12 Kepler problem
13 anisotropic Kepler problem
14 authors' method
15 basis
16 behavior
17 classical mechanics
18 classical trajectories
19 conditions
20 connection
21 dynamical systems
22 eigenvalues
23 energy eigenvalues
24 ergodic systems
25 function
26 importance
27 mechanics
28 method
29 orbit
30 periodic orbits
31 problem
32 quantization
33 quantization condition
34 quantum mechanics
35 stochastic behavior
36 system
37 trajectories
38 schema:name Classical quantization conditions for a dynamical system with stochastic behavior?
39 schema:pagination 316-325
40 schema:productId Nda5f89fa90c844bb9b600f5d67befb93
41 Nefd4bfe627cf486bae7986f36a7b077b
42 schema:publisher N6d8e2a2f8bed4a4c9565fceedd5deb7c
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009010900
44 https://doi.org/10.1007/bfb0021755
45 schema:sdDatePublished 2022-12-01T06:50
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nda9594c955f841eea314f4bdbc2b349b
48 schema:url https://doi.org/10.1007/bfb0021755
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N1ba28f13b34e405c9aff96ac35987eb7 rdf:first N62be965adabe4d288b57a60163c43b74
53 rdf:rest rdf:nil
54 N30abed67a83f4910b7c407f30c3a690b schema:familyName Casati
55 schema:givenName Giulio
56 rdf:type schema:Person
57 N62be965adabe4d288b57a60163c43b74 schema:familyName Ford
58 schema:givenName Joseph
59 rdf:type schema:Person
60 N6d8e2a2f8bed4a4c9565fceedd5deb7c schema:name Springer Nature
61 rdf:type schema:Organisation
62 N744221b6d75a4a888e2e26099e63d6d3 rdf:first sg:person.07737020712.55
63 rdf:rest rdf:nil
64 Nbfb82e411dfd4491969245c9b7cb55fa rdf:first N30abed67a83f4910b7c407f30c3a690b
65 rdf:rest N1ba28f13b34e405c9aff96ac35987eb7
66 Nda5f89fa90c844bb9b600f5d67befb93 schema:name doi
67 schema:value 10.1007/bfb0021755
68 rdf:type schema:PropertyValue
69 Nda9594c955f841eea314f4bdbc2b349b schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ne9aae3a0e9244808ab1497e087e3ad69 schema:isbn 3-540-09120-3
72 schema:name Stochastic Behavior in Classical and Quantum Hamiltonian Systems
73 rdf:type schema:Book
74 Nefd4bfe627cf486bae7986f36a7b077b schema:name dimensions_id
75 schema:value pub.1009010900
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Physics
82 rdf:type schema:DefinedTerm
83 sg:person.07737020712.55 schema:affiliation grid-institutes:grid.481554.9
84 schema:familyName Gutzwiller
85 schema:givenName Martin C.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737020712.55
87 rdf:type schema:Person
88 grid-institutes:grid.481554.9 schema:alternateName IBM Research Center, 10598, Yorktown Heights, New York
89 schema:name IBM Research Center, 10598, Yorktown Heights, New York
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...