Attractor dynamics in an electronic neural network View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Paolo Del Giudice , Stefano Fusi

ABSTRACT

LANN27 is an electronic device implementing in discrete electronics a 27 neurons, fully connected attractor neural network with stochastic learning. We summarize in this paper some key features emerged by extensive tests performed to elucidate the neuronal collective dynamics, the learning dynamics and the memory capacity of the LANN27 device.

PAGES

1265-1270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0020325

DOI

http://dx.doi.org/10.1007/bfb0020325

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040163537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Laboratory, Ist. Superiore di Sanit\u00e1 and INFN, Sez. Sanit\u00e0, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6045.7", 
          "name": [
            "Physics Laboratory, Ist. Superiore di Sanit\u00e1 and INFN, Sez. Sanit\u00e0, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Giudice", 
        "givenName": "Paolo", 
        "id": "sg:person.01307735031.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307735031.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN, Sez. Romal, Dip. Fisica, Universit\u00e1 \u201cLa Sapienza\u201d, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "INFN, Sez. Romal, Dip. Fisica, Universit\u00e1 \u201cLa Sapienza\u201d, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "LANN27 is an electronic device implementing in discrete electronics a 27 neurons, fully connected attractor neural network with stochastic learning. We summarize in this paper some key features emerged by extensive tests performed to elucidate the neuronal collective dynamics, the learning dynamics and the memory capacity of the LANN27 device.", 
    "editor": [
      {
        "familyName": "Gerstner", 
        "givenName": "Wulfram", 
        "type": "Person"
      }, 
      {
        "familyName": "Germond", 
        "givenName": "Alain", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasler", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicoud", 
        "givenName": "Jean-Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0020325", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-63631-1", 
        "978-3-540-69620-9"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN'97", 
      "type": "Book"
    }, 
    "keywords": [
      "neural network", 
      "electronic neural networks", 
      "attractor neural networks", 
      "stochastic learning", 
      "extensive tests", 
      "attractor dynamics", 
      "network", 
      "memory capacity", 
      "key features", 
      "devices", 
      "electronic devices", 
      "learning", 
      "discrete electronics", 
      "features", 
      "collective dynamics", 
      "electronics", 
      "dynamics", 
      "capacity", 
      "test", 
      "neurons", 
      "paper", 
      "LANN27", 
      "connected attractor neural network", 
      "neuronal collective dynamics", 
      "LANN27 device"
    ], 
    "name": "Attractor dynamics in an electronic neural network", 
    "pagination": "1265-1270", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040163537"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0020325"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0020325", 
      "https://app.dimensions.ai/details/publication/pub.1040163537"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_249.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0020325"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      51 URIs      44 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0020325 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N37cfde3da83741c5ae91db8f93a987cd
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description LANN27 is an electronic device implementing in discrete electronics a 27 neurons, fully connected attractor neural network with stochastic learning. We summarize in this paper some key features emerged by extensive tests performed to elucidate the neuronal collective dynamics, the learning dynamics and the memory capacity of the LANN27 device.
7 schema:editor Nfdfd7aaeeba7419288ac1082ccc2635c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4b414520ff7143c38c20be5963cb5d3f
12 schema:keywords LANN27
13 LANN27 device
14 attractor dynamics
15 attractor neural networks
16 capacity
17 collective dynamics
18 connected attractor neural network
19 devices
20 discrete electronics
21 dynamics
22 electronic devices
23 electronic neural networks
24 electronics
25 extensive tests
26 features
27 key features
28 learning
29 memory capacity
30 network
31 neural network
32 neuronal collective dynamics
33 neurons
34 paper
35 stochastic learning
36 test
37 schema:name Attractor dynamics in an electronic neural network
38 schema:pagination 1265-1270
39 schema:productId N465f066b96684c5f8620b10f588f55ce
40 Nce032b1ec1e84cfca9e60146871d3b32
41 schema:publisher N6cfb45c36e3c45b5812b7333e8f566e3
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040163537
43 https://doi.org/10.1007/bfb0020325
44 schema:sdDatePublished 2022-01-01T19:15
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nf00d4d8445d649da87b6fc236e8f882c
47 schema:url https://doi.org/10.1007/bfb0020325
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N0f79060ef2be4cfb87ece0a2f35a9f93 schema:familyName Nicoud
52 schema:givenName Jean-Daniel
53 rdf:type schema:Person
54 N2f78f61a819445beab9e589fcc88fa9a rdf:first N421b22d7ad7d46f58f0ba47541fa1c39
55 rdf:rest N73683a9ff657426bb6eea6484013722d
56 N37cfde3da83741c5ae91db8f93a987cd rdf:first sg:person.01307735031.37
57 rdf:rest N85a1b06008e346c6aedbb5d8872a868a
58 N421b22d7ad7d46f58f0ba47541fa1c39 schema:familyName Hasler
59 schema:givenName Martin
60 rdf:type schema:Person
61 N465f066b96684c5f8620b10f588f55ce schema:name doi
62 schema:value 10.1007/bfb0020325
63 rdf:type schema:PropertyValue
64 N4b414520ff7143c38c20be5963cb5d3f schema:isbn 978-3-540-63631-1
65 978-3-540-69620-9
66 schema:name Artificial Neural Networks — ICANN'97
67 rdf:type schema:Book
68 N6cfb45c36e3c45b5812b7333e8f566e3 schema:name Springer Nature
69 rdf:type schema:Organisation
70 N73683a9ff657426bb6eea6484013722d rdf:first N0f79060ef2be4cfb87ece0a2f35a9f93
71 rdf:rest rdf:nil
72 N77ee7c884e734ebba28f51f499a663ea rdf:first N7978d2dd2a0e4f8795505fd74fab0acd
73 rdf:rest N2f78f61a819445beab9e589fcc88fa9a
74 N7978d2dd2a0e4f8795505fd74fab0acd schema:familyName Germond
75 schema:givenName Alain
76 rdf:type schema:Person
77 N85a1b06008e346c6aedbb5d8872a868a rdf:first sg:person.01326702501.50
78 rdf:rest rdf:nil
79 Nce032b1ec1e84cfca9e60146871d3b32 schema:name dimensions_id
80 schema:value pub.1040163537
81 rdf:type schema:PropertyValue
82 Nd1bcb974abff4c59920aa99e64bd41d6 schema:familyName Gerstner
83 schema:givenName Wulfram
84 rdf:type schema:Person
85 Nf00d4d8445d649da87b6fc236e8f882c schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nfdfd7aaeeba7419288ac1082ccc2635c rdf:first Nd1bcb974abff4c59920aa99e64bd41d6
88 rdf:rest N77ee7c884e734ebba28f51f499a663ea
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
93 schema:name Neurosciences
94 rdf:type schema:DefinedTerm
95 sg:person.01307735031.37 schema:affiliation grid-institutes:grid.6045.7
96 schema:familyName Del Giudice
97 schema:givenName Paolo
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307735031.37
99 rdf:type schema:Person
100 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.7841.a
101 schema:familyName Fusi
102 schema:givenName Stefano
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
104 rdf:type schema:Person
105 grid-institutes:grid.6045.7 schema:alternateName Physics Laboratory, Ist. Superiore di Sanitá and INFN, Sez. Sanità, Rome, Italy
106 schema:name Physics Laboratory, Ist. Superiore di Sanitá and INFN, Sez. Sanità, Rome, Italy
107 rdf:type schema:Organization
108 grid-institutes:grid.7841.a schema:alternateName INFN, Sez. Romal, Dip. Fisica, Universitá “La Sapienza”, Rome, Italy
109 schema:name INFN, Sez. Romal, Dip. Fisica, Universitá “La Sapienza”, Rome, Italy
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...