Attractor dynamics in an electronic neural network View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Paolo Del Giudice , Stefano Fusi

ABSTRACT

LANN27 is an electronic device implementing in discrete electronics a 27 neurons, fully connected attractor neural network with stochastic learning. We summarize in this paper some key features emerged by extensive tests performed to elucidate the neuronal collective dynamics, the learning dynamics and the memory capacity of the LANN27 device.

PAGES

1265-1270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0020325

DOI

http://dx.doi.org/10.1007/bfb0020325

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040163537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Laboratory, Ist. Superiore di Sanit\u00e1 and INFN, Sez. Sanit\u00e0, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6045.7", 
          "name": [
            "Physics Laboratory, Ist. Superiore di Sanit\u00e1 and INFN, Sez. Sanit\u00e0, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Giudice", 
        "givenName": "Paolo", 
        "id": "sg:person.01307735031.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307735031.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN, Sez. Romal, Dip. Fisica, Universit\u00e1 \u201cLa Sapienza\u201d, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "INFN, Sez. Romal, Dip. Fisica, Universit\u00e1 \u201cLa Sapienza\u201d, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "LANN27 is an electronic device implementing in discrete electronics a 27 neurons, fully connected attractor neural network with stochastic learning. We summarize in this paper some key features emerged by extensive tests performed to elucidate the neuronal collective dynamics, the learning dynamics and the memory capacity of the LANN27 device.", 
    "editor": [
      {
        "familyName": "Gerstner", 
        "givenName": "Wulfram", 
        "type": "Person"
      }, 
      {
        "familyName": "Germond", 
        "givenName": "Alain", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasler", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicoud", 
        "givenName": "Jean-Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0020325", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-63631-1", 
        "978-3-540-69620-9"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN'97", 
      "type": "Book"
    }, 
    "keywords": [
      "neural network", 
      "electronic neural networks", 
      "attractor neural networks", 
      "stochastic learning", 
      "extensive tests", 
      "attractor dynamics", 
      "network", 
      "memory capacity", 
      "key features", 
      "devices", 
      "electronic devices", 
      "learning", 
      "discrete electronics", 
      "features", 
      "collective dynamics", 
      "electronics", 
      "dynamics", 
      "capacity", 
      "test", 
      "neurons", 
      "paper", 
      "LANN27", 
      "connected attractor neural network", 
      "neuronal collective dynamics", 
      "LANN27 device"
    ], 
    "name": "Attractor dynamics in an electronic neural network", 
    "pagination": "1265-1270", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040163537"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0020325"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0020325", 
      "https://app.dimensions.ai/details/publication/pub.1040163537"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_148.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0020325"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0020325'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      51 URIs      44 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0020325 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N04bd295fd30543ccb5a1198da9764daa
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description LANN27 is an electronic device implementing in discrete electronics a 27 neurons, fully connected attractor neural network with stochastic learning. We summarize in this paper some key features emerged by extensive tests performed to elucidate the neuronal collective dynamics, the learning dynamics and the memory capacity of the LANN27 device.
7 schema:editor N7e4b57de58b24193a70425d5b81afcac
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N618e64ef0330405f90d91df73ab2ca6e
12 schema:keywords LANN27
13 LANN27 device
14 attractor dynamics
15 attractor neural networks
16 capacity
17 collective dynamics
18 connected attractor neural network
19 devices
20 discrete electronics
21 dynamics
22 electronic devices
23 electronic neural networks
24 electronics
25 extensive tests
26 features
27 key features
28 learning
29 memory capacity
30 network
31 neural network
32 neuronal collective dynamics
33 neurons
34 paper
35 stochastic learning
36 test
37 schema:name Attractor dynamics in an electronic neural network
38 schema:pagination 1265-1270
39 schema:productId N4641d8611aaf4c3e9f9d4dd1ae01dd40
40 N4feeb6207635494d9b26b1b666c32483
41 schema:publisher Nc934d7e73034422aa15102e6bd6bf117
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040163537
43 https://doi.org/10.1007/bfb0020325
44 schema:sdDatePublished 2021-11-01T18:47
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N67a8772a62434e7c87f158e28a6f10e8
47 schema:url https://doi.org/10.1007/bfb0020325
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N04bd295fd30543ccb5a1198da9764daa rdf:first sg:person.01307735031.37
52 rdf:rest Na478a816c2f84e3395571dc19b7b75eb
53 N322fa818feb044cd860767b6a38d1903 schema:familyName Gerstner
54 schema:givenName Wulfram
55 rdf:type schema:Person
56 N375c87bb884a402986cc205aedaa8275 schema:familyName Germond
57 schema:givenName Alain
58 rdf:type schema:Person
59 N4641d8611aaf4c3e9f9d4dd1ae01dd40 schema:name doi
60 schema:value 10.1007/bfb0020325
61 rdf:type schema:PropertyValue
62 N4feeb6207635494d9b26b1b666c32483 schema:name dimensions_id
63 schema:value pub.1040163537
64 rdf:type schema:PropertyValue
65 N618e64ef0330405f90d91df73ab2ca6e schema:isbn 978-3-540-63631-1
66 978-3-540-69620-9
67 schema:name Artificial Neural Networks — ICANN'97
68 rdf:type schema:Book
69 N67a8772a62434e7c87f158e28a6f10e8 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N7e4b57de58b24193a70425d5b81afcac rdf:first N322fa818feb044cd860767b6a38d1903
72 rdf:rest N8d4a4823903e481cb287da699be9a517
73 N8d4a4823903e481cb287da699be9a517 rdf:first N375c87bb884a402986cc205aedaa8275
74 rdf:rest N9290291bdbfd4fcdbc2803829ed61788
75 N9290291bdbfd4fcdbc2803829ed61788 rdf:first Ne3dbd286cc834398b7329d752a04c0f0
76 rdf:rest Ne7238988a9bb4f5f92d61f561da75c5f
77 Na478a816c2f84e3395571dc19b7b75eb rdf:first sg:person.01326702501.50
78 rdf:rest rdf:nil
79 Nc934d7e73034422aa15102e6bd6bf117 schema:name Springer Nature
80 rdf:type schema:Organisation
81 Ne3dbd286cc834398b7329d752a04c0f0 schema:familyName Hasler
82 schema:givenName Martin
83 rdf:type schema:Person
84 Ne7238988a9bb4f5f92d61f561da75c5f rdf:first Nffb5ca51fff44dc88c73116f40dac02e
85 rdf:rest rdf:nil
86 Nffb5ca51fff44dc88c73116f40dac02e schema:familyName Nicoud
87 schema:givenName Jean-Daniel
88 rdf:type schema:Person
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
93 schema:name Neurosciences
94 rdf:type schema:DefinedTerm
95 sg:person.01307735031.37 schema:affiliation grid-institutes:grid.6045.7
96 schema:familyName Del Giudice
97 schema:givenName Paolo
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307735031.37
99 rdf:type schema:Person
100 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.7841.a
101 schema:familyName Fusi
102 schema:givenName Stefano
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
104 rdf:type schema:Person
105 grid-institutes:grid.6045.7 schema:alternateName Physics Laboratory, Ist. Superiore di Sanitá and INFN, Sez. Sanità, Rome, Italy
106 schema:name Physics Laboratory, Ist. Superiore di Sanitá and INFN, Sez. Sanità, Rome, Italy
107 rdf:type schema:Organization
108 grid-institutes:grid.7841.a schema:alternateName INFN, Sez. Romal, Dip. Fisica, Universitá “La Sapienza”, Rome, Italy
109 schema:name INFN, Sez. Romal, Dip. Fisica, Universitá “La Sapienza”, Rome, Italy
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...