Predicting time series with support vector machines View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

K. -R. Müller , A. J. Smola , G. Rätsch , B. Schölkopf , J. Kohlmorgen , V. Vapnik

ABSTRACT

Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%. More... »

PAGES

999-1004

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0020283

DOI

http://dx.doi.org/10.1007/bfb0020283

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042514609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.469821.0", 
          "name": [
            "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "K. -R.", 
        "id": "sg:person.01066211757.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066211757.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.469821.0", 
          "name": [
            "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smola", 
        "givenName": "A. J.", 
        "id": "sg:person.011524232607.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524232607.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.469821.0", 
          "name": [
            "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00e4tsch", 
        "givenName": "G.", 
        "id": "sg:person.01005551566.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005551566.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f. biol. Kybernetik, Spemannstr. 38, 72076, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut f. biol. Kybernetik, Spemannstr. 38, 72076, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6lkopf", 
        "givenName": "B.", 
        "id": "sg:person.01347550335.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347550335.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.469821.0", 
          "name": [
            "GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohlmorgen", 
        "givenName": "J.", 
        "id": "sg:person.010453353265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453353265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AT&T Research, PO 3030, 101 Crawfords Corner Rd, 07733, Holmdel, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "AT&T Research, PO 3030, 101 Crawfords Corner Rd, 07733, Holmdel, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vapnik", 
        "givenName": "V.", 
        "id": "sg:person.012166363434.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166363434.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.", 
    "editor": [
      {
        "familyName": "Gerstner", 
        "givenName": "Wulfram", 
        "type": "Person"
      }, 
      {
        "familyName": "Germond", 
        "givenName": "Alain", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasler", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicoud", 
        "givenName": "Jean-Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0020283", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-63631-1", 
        "978-3-540-69620-9"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN'97", 
      "type": "Book"
    }, 
    "keywords": [
      "support vector machine", 
      "vector machine", 
      "robust loss function", 
      "cases Support Vector Machines", 
      "radial basis function network", 
      "time series prediction", 
      "Santa Fe competition", 
      "basis function network", 
      "support vector approach", 
      "insensitive loss", 
      "different cost functions", 
      "support vectors", 
      "series prediction", 
      "function network", 
      "loss function", 
      "machine", 
      "Mackey-Glass equation", 
      "Fe competition", 
      "cost function", 
      "vector approach", 
      "excellent performance", 
      "regularization parameter", 
      "time series", 
      "network", 
      "benchmarks", 
      "applications", 
      "performance", 
      "vector", 
      "prediction", 
      "model", 
      "data", 
      "use", 
      "function", 
      "results", 
      "parameters", 
      "competition", 
      "cases", 
      "series", 
      "loss", 
      "factors", 
      "equations", 
      "approach"
    ], 
    "name": "Predicting time series with support vector machines", 
    "pagination": "999-1004", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042514609"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0020283"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0020283", 
      "https://app.dimensions.ai/details/publication/pub.1042514609"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_92.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0020283"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0020283'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0020283'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0020283'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0020283'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0020283 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N445e9872b0af42fa9535c67e26f0aa49
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.
7 schema:editor N5abaf3d628964a43859298851cbefc36
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2f2f676eb2c74094930582bf3b16fc67
12 schema:keywords Fe competition
13 Mackey-Glass equation
14 Santa Fe competition
15 applications
16 approach
17 basis function network
18 benchmarks
19 cases
20 cases Support Vector Machines
21 competition
22 cost function
23 data
24 different cost functions
25 equations
26 excellent performance
27 factors
28 function
29 function network
30 insensitive loss
31 loss
32 loss function
33 machine
34 model
35 network
36 parameters
37 performance
38 prediction
39 radial basis function network
40 regularization parameter
41 results
42 robust loss function
43 series
44 series prediction
45 support vector approach
46 support vector machine
47 support vectors
48 time series
49 time series prediction
50 use
51 vector
52 vector approach
53 vector machine
54 schema:name Predicting time series with support vector machines
55 schema:pagination 999-1004
56 schema:productId N86e2ed71974d4f8cbfb8f3ad13b2df89
57 Ndc2ef89f3e734e25ae1d0488152dd0a1
58 schema:publisher N626804c39764413fb5349fe9676c10be
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042514609
60 https://doi.org/10.1007/bfb0020283
61 schema:sdDatePublished 2022-05-20T07:49
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nfa07a69679b04e71a6cdf8a32d883d5e
64 schema:url https://doi.org/10.1007/bfb0020283
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N059bf432ee4341e0b28d504e477055c2 rdf:first sg:person.01347550335.24
69 rdf:rest Ne206612eee7f42e68b7c002d20bdd556
70 N197863b81cfd4c38a1d1bd508e7efb55 rdf:first sg:person.01005551566.12
71 rdf:rest N059bf432ee4341e0b28d504e477055c2
72 N2f2f676eb2c74094930582bf3b16fc67 schema:isbn 978-3-540-63631-1
73 978-3-540-69620-9
74 schema:name Artificial Neural Networks — ICANN'97
75 rdf:type schema:Book
76 N445e9872b0af42fa9535c67e26f0aa49 rdf:first sg:person.01066211757.29
77 rdf:rest Nc098b09ea26343899ead95567065628c
78 N571f1fcaaccd4f3e905efb577d9bb9cd schema:familyName Hasler
79 schema:givenName Martin
80 rdf:type schema:Person
81 N5abaf3d628964a43859298851cbefc36 rdf:first Nfb7d5c4eb96e4c8c9f8b3ab079516479
82 rdf:rest N851d580cbf67479096457c45a3353e89
83 N626804c39764413fb5349fe9676c10be schema:name Springer Nature
84 rdf:type schema:Organisation
85 N851d580cbf67479096457c45a3353e89 rdf:first Nac91c85495904a1fb4acad2ba4d244e9
86 rdf:rest Nc27f1ae81fc949608ba90d7cad12102b
87 N86e2ed71974d4f8cbfb8f3ad13b2df89 schema:name dimensions_id
88 schema:value pub.1042514609
89 rdf:type schema:PropertyValue
90 Na292a31b7e6a47b8acaa0f69a8624421 schema:familyName Nicoud
91 schema:givenName Jean-Daniel
92 rdf:type schema:Person
93 Nac91c85495904a1fb4acad2ba4d244e9 schema:familyName Germond
94 schema:givenName Alain
95 rdf:type schema:Person
96 Nbb703f5b179e4eea8c1f2e4fb6b17f06 rdf:first sg:person.012166363434.68
97 rdf:rest rdf:nil
98 Nc098b09ea26343899ead95567065628c rdf:first sg:person.011524232607.48
99 rdf:rest N197863b81cfd4c38a1d1bd508e7efb55
100 Nc27f1ae81fc949608ba90d7cad12102b rdf:first N571f1fcaaccd4f3e905efb577d9bb9cd
101 rdf:rest Nf100f2ff699a48f7b6096fbbd471016c
102 Ndc2ef89f3e734e25ae1d0488152dd0a1 schema:name doi
103 schema:value 10.1007/bfb0020283
104 rdf:type schema:PropertyValue
105 Ne206612eee7f42e68b7c002d20bdd556 rdf:first sg:person.010453353265.37
106 rdf:rest Nbb703f5b179e4eea8c1f2e4fb6b17f06
107 Nf100f2ff699a48f7b6096fbbd471016c rdf:first Na292a31b7e6a47b8acaa0f69a8624421
108 rdf:rest rdf:nil
109 Nfa07a69679b04e71a6cdf8a32d883d5e schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nfb7d5c4eb96e4c8c9f8b3ab079516479 schema:familyName Gerstner
112 schema:givenName Wulfram
113 rdf:type schema:Person
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information Systems
119 rdf:type schema:DefinedTerm
120 sg:person.01005551566.12 schema:affiliation grid-institutes:grid.469821.0
121 schema:familyName Rätsch
122 schema:givenName G.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005551566.12
124 rdf:type schema:Person
125 sg:person.010453353265.37 schema:affiliation grid-institutes:grid.469821.0
126 schema:familyName Kohlmorgen
127 schema:givenName J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453353265.37
129 rdf:type schema:Person
130 sg:person.01066211757.29 schema:affiliation grid-institutes:grid.469821.0
131 schema:familyName Müller
132 schema:givenName K. -R.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066211757.29
134 rdf:type schema:Person
135 sg:person.011524232607.48 schema:affiliation grid-institutes:grid.469821.0
136 schema:familyName Smola
137 schema:givenName A. J.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524232607.48
139 rdf:type schema:Person
140 sg:person.012166363434.68 schema:affiliation grid-institutes:None
141 schema:familyName Vapnik
142 schema:givenName V.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166363434.68
144 rdf:type schema:Person
145 sg:person.01347550335.24 schema:affiliation grid-institutes:grid.4372.2
146 schema:familyName Schölkopf
147 schema:givenName B.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347550335.24
149 rdf:type schema:Person
150 grid-institutes:None schema:alternateName AT&T Research, PO 3030, 101 Crawfords Corner Rd, 07733, Holmdel, USA
151 schema:name AT&T Research, PO 3030, 101 Crawfords Corner Rd, 07733, Holmdel, USA
152 rdf:type schema:Organization
153 grid-institutes:grid.4372.2 schema:alternateName Max-Planck-Institut f. biol. Kybernetik, Spemannstr. 38, 72076, Germany
154 schema:name Max-Planck-Institut f. biol. Kybernetik, Spemannstr. 38, 72076, Germany
155 rdf:type schema:Organization
156 grid-institutes:grid.469821.0 schema:alternateName GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany
157 schema:name GMD FIRST, Rudower Chaussee 5, 12489, Berlin, Germany
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...