Wavelet frames based estimator View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Skander Soltani , Stephane Canu , Daniel Boichu , Yves Grandvalet

ABSTRACT

This paper introduces a new wavelet frames-based functional estimation method (i.e. a wavelet-based neural network which works for more than one dimension functions. The use of frames and wavelets in our approach yields to robust decomposition with an interesting parsimonious property: compression of information in few coefficients. This approach is illustrated using the problem of estimating radioactivity in Chernobyl area. More... »

PAGES

319-324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0020174

DOI

http://dx.doi.org/10.1007/bfb0020174

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047950920


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heuristique & Diagnostic des Syst\u00e8me Complexes, U.M.R. C.N.R.S., 6599, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Heuristique & Diagnostic des Syst\u00e8me Complexes, U.M.R. C.N.R.S., 6599, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soltani", 
        "givenName": "Skander", 
        "id": "sg:person.014051445556.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051445556.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heuristique & Diagnostic des Syst\u00e8me Complexes, U.M.R. C.N.R.S., 6599, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Heuristique & Diagnostic des Syst\u00e8me Complexes, U.M.R. C.N.R.S., 6599, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canu", 
        "givenName": "Stephane", 
        "id": "sg:person.010537763601.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537763601.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division de Math\u00e9matiques Appliqu\u00e9es, Universit\u00e9 de Technologie de Compiegne, B.P. 20529, 60205, Compiegne Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.6227.1", 
          "name": [
            "Division de Math\u00e9matiques Appliqu\u00e9es, Universit\u00e9 de Technologie de Compiegne, B.P. 20529, 60205, Compiegne Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boichu", 
        "givenName": "Daniel", 
        "id": "sg:person.015301531043.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015301531043.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heuristique & Diagnostic des Syst\u00e8me Complexes, U.M.R. C.N.R.S., 6599, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Heuristique & Diagnostic des Syst\u00e8me Complexes, U.M.R. C.N.R.S., 6599, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandvalet", 
        "givenName": "Yves", 
        "id": "sg:person.015255215731.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "This paper introduces a new wavelet frames-based functional estimation method (i.e. a wavelet-based neural network which works for more than one dimension functions. The use of frames and wavelets in our approach yields to robust decomposition with an interesting parsimonious property: compression of information in few coefficients. This approach is illustrated using the problem of estimating radioactivity in Chernobyl area.", 
    "editor": [
      {
        "familyName": "Gerstner", 
        "givenName": "Wulfram", 
        "type": "Person"
      }, 
      {
        "familyName": "Germond", 
        "givenName": "Alain", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasler", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicoud", 
        "givenName": "Jean-Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0020174", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-63631-1", 
        "978-3-540-69620-9"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN'97", 
      "type": "Book"
    }, 
    "keywords": [
      "estimation method", 
      "method", 
      "paper", 
      "new wavelet frames-based functional estimation method", 
      "wavelet frames-based functional estimation method", 
      "frames-based functional estimation method", 
      "functional estimation method"
    ], 
    "name": "Wavelet frames based estimator", 
    "pagination": "319-324", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047950920"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0020174"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0020174", 
      "https://app.dimensions.ai/details/publication/pub.1047950920"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_108.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0020174"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0020174'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0020174'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0020174'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0020174'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      33 URIs      26 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0020174 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3fbcb0994a524709b89ac17a7850cab0
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description This paper introduces a new wavelet frames-based functional estimation method (i.e. a wavelet-based neural network which works for more than one dimension functions. The use of frames and wavelets in our approach yields to robust decomposition with an interesting parsimonious property: compression of information in few coefficients. This approach is illustrated using the problem of estimating radioactivity in Chernobyl area.
7 schema:editor N8aca9dedf9e6419e893bba7041ed64a9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9194a112138747ad8a73df18fa995ea2
12 schema:keywords estimation method
13 frames-based functional estimation method
14 functional estimation method
15 method
16 new wavelet frames-based functional estimation method
17 paper
18 wavelet frames-based functional estimation method
19 schema:name Wavelet frames based estimator
20 schema:pagination 319-324
21 schema:productId N4d149a2d4c8f4c6ca857b2a706b54321
22 Nf30deaa979b84a7e9df5265e2a8ce84f
23 schema:publisher Nad80ea074126452c80683774cf4bc52d
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047950920
25 https://doi.org/10.1007/bfb0020174
26 schema:sdDatePublished 2022-01-01T19:06
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N18ff42117288467f8eb08ea42fea091b
29 schema:url https://doi.org/10.1007/bfb0020174
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N18ff42117288467f8eb08ea42fea091b schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N3fbcb0994a524709b89ac17a7850cab0 rdf:first sg:person.014051445556.74
36 rdf:rest N6046c931c9a54b1497ce1d74378d6f2c
37 N4d149a2d4c8f4c6ca857b2a706b54321 schema:name dimensions_id
38 schema:value pub.1047950920
39 rdf:type schema:PropertyValue
40 N5945425c0ebf4ce39c50505813d8300d rdf:first N7ab46ff7e66f438789068990d7ac1a2b
41 rdf:rest Ne8bff83dc0054e6ea2cdc897cc26ea51
42 N6046c931c9a54b1497ce1d74378d6f2c rdf:first sg:person.010537763601.46
43 rdf:rest Nfc209bd5c7ec4a31a5216ec867db3b4f
44 N66093e3ed4f74b7cbb964c7b8239d2c3 schema:familyName Hasler
45 schema:givenName Martin
46 rdf:type schema:Person
47 N79ffa73c3fa642768af710553ce7a63a rdf:first sg:person.015255215731.52
48 rdf:rest rdf:nil
49 N7ab46ff7e66f438789068990d7ac1a2b schema:familyName Germond
50 schema:givenName Alain
51 rdf:type schema:Person
52 N7bdf2d8b9371491db3a53deea245d7f1 schema:familyName Gerstner
53 schema:givenName Wulfram
54 rdf:type schema:Person
55 N8aca9dedf9e6419e893bba7041ed64a9 rdf:first N7bdf2d8b9371491db3a53deea245d7f1
56 rdf:rest N5945425c0ebf4ce39c50505813d8300d
57 N9194a112138747ad8a73df18fa995ea2 schema:isbn 978-3-540-63631-1
58 978-3-540-69620-9
59 schema:name Artificial Neural Networks — ICANN'97
60 rdf:type schema:Book
61 Nad80ea074126452c80683774cf4bc52d schema:name Springer Nature
62 rdf:type schema:Organisation
63 Nd2af7b4c64444b758b26749230c6dfff schema:familyName Nicoud
64 schema:givenName Jean-Daniel
65 rdf:type schema:Person
66 Ndd0d649531c443e69fe0aa9e44866e61 rdf:first Nd2af7b4c64444b758b26749230c6dfff
67 rdf:rest rdf:nil
68 Ne8bff83dc0054e6ea2cdc897cc26ea51 rdf:first N66093e3ed4f74b7cbb964c7b8239d2c3
69 rdf:rest Ndd0d649531c443e69fe0aa9e44866e61
70 Nf30deaa979b84a7e9df5265e2a8ce84f schema:name doi
71 schema:value 10.1007/bfb0020174
72 rdf:type schema:PropertyValue
73 Nfc209bd5c7ec4a31a5216ec867db3b4f rdf:first sg:person.015301531043.52
74 rdf:rest N79ffa73c3fa642768af710553ce7a63a
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.010537763601.46 schema:affiliation grid-institutes:None
82 schema:familyName Canu
83 schema:givenName Stephane
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537763601.46
85 rdf:type schema:Person
86 sg:person.014051445556.74 schema:affiliation grid-institutes:None
87 schema:familyName Soltani
88 schema:givenName Skander
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051445556.74
90 rdf:type schema:Person
91 sg:person.015255215731.52 schema:affiliation grid-institutes:None
92 schema:familyName Grandvalet
93 schema:givenName Yves
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52
95 rdf:type schema:Person
96 sg:person.015301531043.52 schema:affiliation grid-institutes:grid.6227.1
97 schema:familyName Boichu
98 schema:givenName Daniel
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015301531043.52
100 rdf:type schema:Person
101 grid-institutes:None schema:alternateName Heuristique & Diagnostic des Système Complexes, U.M.R. C.N.R.S., 6599, France
102 schema:name Heuristique & Diagnostic des Système Complexes, U.M.R. C.N.R.S., 6599, France
103 rdf:type schema:Organization
104 grid-institutes:grid.6227.1 schema:alternateName Division de Mathématiques Appliquées, Université de Technologie de Compiegne, B.P. 20529, 60205, Compiegne Cedex, France
105 schema:name Division de Mathématiques Appliquées, Université de Technologie de Compiegne, B.P. 20529, 60205, Compiegne Cedex, France
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...