Modeling networks with linear (VLSI) integrate-and-fire neurons View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Maurizio Mattia , Stefano Fusi

ABSTRACT

We analyse in detail the statistical properties of a “canonical” integrate-and-fire neuron with a linear integrator as often used in VLSI implementations [1]. We show that a network of such elements can maintain both stable spontaneous activity and selective (stimulus specific) activity, contrary to current opinion. The spike statistics appears to be qualitatively the same as in networks of conventional (exponential) integrate-and-fire neurons that in turn, exhibit a wide variety of characteristics observed in cortical recordings[2]. More... »

PAGES

67-72

Book

TITLE

Artificial Neural Networks — ICANN'97

ISBN

978-3-540-63631-1
978-3-540-69620-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0020134

DOI

http://dx.doi.org/10.1007/bfb0020134

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006046888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN, Sezione di Roma 1, Dipartimento di Fisica, Universit\u00e0 di Roma, La Sapienza, P.le Aldo Moro 2, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "INFN, Sezione di Roma 1, Dipartimento di Fisica, Universit\u00e0 di Roma, La Sapienza, P.le Aldo Moro 2, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mattia", 
        "givenName": "Maurizio", 
        "id": "sg:person.0702303600.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702303600.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN, Sezione di Roma 1, Dipartimento di Fisica, Universit\u00e0 di Roma, La Sapienza, P.le Aldo Moro 2, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "INFN, Sezione di Roma 1, Dipartimento di Fisica, Universit\u00e0 di Roma, La Sapienza, P.le Aldo Moro 2, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "We analyse in detail the statistical properties of a \u201ccanonical\u201d integrate-and-fire neuron with a linear integrator as often used in VLSI implementations [1]. We show that a network of such elements can maintain both stable spontaneous activity and selective (stimulus specific) activity, contrary to current opinion. The spike statistics appears to be qualitatively the same as in networks of conventional (exponential) integrate-and-fire neurons that in turn, exhibit a wide variety of characteristics observed in cortical recordings[2].", 
    "editor": [
      {
        "familyName": "Gerstner", 
        "givenName": "Wulfram", 
        "type": "Person"
      }, 
      {
        "familyName": "Germond", 
        "givenName": "Alain", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasler", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicoud", 
        "givenName": "Jean-Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0020134", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-63631-1", 
        "978-3-540-69620-9"
      ], 
      "name": "Artificial Neural Networks \u2014 ICANN'97", 
      "type": "Book"
    }, 
    "keywords": [
      "fire neurons", 
      "statistical properties", 
      "stable spontaneous activity", 
      "linear integrator", 
      "spike statistics", 
      "network", 
      "integrator", 
      "statistics", 
      "VLSI implementation", 
      "integrate", 
      "wide variety", 
      "such elements", 
      "implementation", 
      "detail", 
      "properties", 
      "elements", 
      "variety", 
      "characteristics", 
      "turn", 
      "neurons", 
      "opinion", 
      "spontaneous activity", 
      "current opinion", 
      "activity", 
      "selective activity"
    ], 
    "name": "Modeling networks with linear (VLSI) integrate-and-fire neurons", 
    "pagination": "67-72", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006046888"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0020134"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0020134", 
      "https://app.dimensions.ai/details/publication/pub.1006046888"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_93.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0020134"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0020134'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0020134'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0020134'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0020134'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      51 URIs      44 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0020134 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5421b7e1fb844559bcd9af942b6d4978
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description We analyse in detail the statistical properties of a “canonical” integrate-and-fire neuron with a linear integrator as often used in VLSI implementations [1]. We show that a network of such elements can maintain both stable spontaneous activity and selective (stimulus specific) activity, contrary to current opinion. The spike statistics appears to be qualitatively the same as in networks of conventional (exponential) integrate-and-fire neurons that in turn, exhibit a wide variety of characteristics observed in cortical recordings[2].
7 schema:editor N880dc6250ac446bc83c672ddcc328c21
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N63a8ff291933410587c30eac80143e96
12 schema:keywords VLSI implementation
13 activity
14 characteristics
15 current opinion
16 detail
17 elements
18 fire neurons
19 implementation
20 integrate
21 integrator
22 linear integrator
23 network
24 neurons
25 opinion
26 properties
27 selective activity
28 spike statistics
29 spontaneous activity
30 stable spontaneous activity
31 statistical properties
32 statistics
33 such elements
34 turn
35 variety
36 wide variety
37 schema:name Modeling networks with linear (VLSI) integrate-and-fire neurons
38 schema:pagination 67-72
39 schema:productId N6289f5183c3e4240b733c3b8e7c1a79c
40 N6361d5a218ee44b59183923220ba1568
41 schema:publisher N29a7432413a64f3e87062eddc9f16ffd
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006046888
43 https://doi.org/10.1007/bfb0020134
44 schema:sdDatePublished 2021-11-01T19:03
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nf49bdbe2d5f948c69f258e35033c096f
47 schema:url https://doi.org/10.1007/bfb0020134
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N04726e4aa5ef4bc79c2b3ed7b8e2e9b5 schema:familyName Hasler
52 schema:givenName Martin
53 rdf:type schema:Person
54 N202d800989bc4815a36da7e7aa4ea384 schema:familyName Germond
55 schema:givenName Alain
56 rdf:type schema:Person
57 N29a7432413a64f3e87062eddc9f16ffd schema:name Springer Nature
58 rdf:type schema:Organisation
59 N5421b7e1fb844559bcd9af942b6d4978 rdf:first sg:person.0702303600.23
60 rdf:rest Nd2bbbee47d8d40f491de0b1f67110e03
61 N5d7800a087704cbbb40767067ae34a67 rdf:first N04726e4aa5ef4bc79c2b3ed7b8e2e9b5
62 rdf:rest N6ef8189f942b481cb806ab60e58bb1f3
63 N6289f5183c3e4240b733c3b8e7c1a79c schema:name doi
64 schema:value 10.1007/bfb0020134
65 rdf:type schema:PropertyValue
66 N6361d5a218ee44b59183923220ba1568 schema:name dimensions_id
67 schema:value pub.1006046888
68 rdf:type schema:PropertyValue
69 N63a8ff291933410587c30eac80143e96 schema:isbn 978-3-540-63631-1
70 978-3-540-69620-9
71 schema:name Artificial Neural Networks — ICANN'97
72 rdf:type schema:Book
73 N6ef8189f942b481cb806ab60e58bb1f3 rdf:first N70324394c15b4fc0bdca26dcffcfe832
74 rdf:rest rdf:nil
75 N70324394c15b4fc0bdca26dcffcfe832 schema:familyName Nicoud
76 schema:givenName Jean-Daniel
77 rdf:type schema:Person
78 N880dc6250ac446bc83c672ddcc328c21 rdf:first Nc317bbca0944477cbbeda4004b6bfb6a
79 rdf:rest Nd4558b06740b434a86e0654ca8aa3407
80 Nc317bbca0944477cbbeda4004b6bfb6a schema:familyName Gerstner
81 schema:givenName Wulfram
82 rdf:type schema:Person
83 Nd2bbbee47d8d40f491de0b1f67110e03 rdf:first sg:person.01326702501.50
84 rdf:rest rdf:nil
85 Nd4558b06740b434a86e0654ca8aa3407 rdf:first N202d800989bc4815a36da7e7aa4ea384
86 rdf:rest N5d7800a087704cbbb40767067ae34a67
87 Nf49bdbe2d5f948c69f258e35033c096f schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
93 schema:name Statistics
94 rdf:type schema:DefinedTerm
95 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.7841.a
96 schema:familyName Fusi
97 schema:givenName Stefano
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
99 rdf:type schema:Person
100 sg:person.0702303600.23 schema:affiliation grid-institutes:grid.7841.a
101 schema:familyName Mattia
102 schema:givenName Maurizio
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702303600.23
104 rdf:type schema:Person
105 grid-institutes:grid.7841.a schema:alternateName INFN, Sezione di Roma 1, Dipartimento di Fisica, Università di Roma, La Sapienza, P.le Aldo Moro 2, Rome, Italy
106 schema:name INFN, Sezione di Roma 1, Dipartimento di Fisica, Università di Roma, La Sapienza, P.le Aldo Moro 2, Rome, Italy
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...