Knowledge Representation and Organization in Machine Learning View Full Text


Ontology type: schema:Book     


Book Info

DATE

1989

GENRE

Book

PUBLISHER

Springer Berlin Heidelberg

ABSTRACT

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0017213

DOI

http://dx.doi.org/10.1007/bfb0017213

ISBN

978-3-540-50768-0 | 978-3-540-46081-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108495019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "editor": [
      {
        "familyName": "Morik", 
        "givenName": "Katharina", 
        "type": "Person"
      }
    ], 
    "genre": "book", 
    "id": "sg:pub.10.1007/bfb0017213", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isbn": [
      "978-3-540-50768-0", 
      "978-3-540-46081-7"
    ], 
    "name": "Knowledge Representation and Organization in Machine Learning", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c8fc804cc434acf7b89d874fffbcea41a5a367829844649e9f9cc67e655bfbd0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0017213"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108495019"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0017213", 
      "https://app.dimensions.ai/details/publication/pub.1108495019"
    ], 
    "sdDataset": "books", 
    "sdDatePublished": "2019-04-12T04:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000002.jsonl", 
    "type": "Book", 
    "url": "https://link.springer.com/10.1007%2FBFb0017213"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0017213'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0017213'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0017213'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0017213'


 

This table displays all metadata directly associated to this object as RDF triples.

41 TRIPLES      18 PREDICATES      23 URIs      18 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0017213 schema:datePublished 1989
2 schema:datePublishedReg 1989-01-01
3 schema:editor Ne1bd00ad1cc045e093b43776066dc254
4 schema:genre book
5 schema:inLanguage en
6 schema:isAccessibleForFree false
7 schema:isbn 978-3-540-46081-7
8 978-3-540-50768-0
9 schema:name Knowledge Representation and Organization in Machine Learning
10 schema:productId N52c5d410dec54a69a44f1c5942931ea3
11 N6fc47d94b7444ab6a226e95154c82b1c
12 Ncbf3a4509a9044afa1ac027b1eb4fb0d
13 schema:publisher Nbd5cc81054de415eaf77dd718a06934d
14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108495019
15 https://doi.org/10.1007/bfb0017213
16 schema:sdDatePublished 2019-04-12T04:12
17 schema:sdLicense https://scigraph.springernature.com/explorer/license/
18 schema:sdPublisher N105ec019e6fd44bca2e13ab4837ce461
19 schema:url https://link.springer.com/10.1007%2FBFb0017213
20 sgo:license sg:explorer/license/
21 sgo:sdDataset books
22 rdf:type schema:Book
23 N105ec019e6fd44bca2e13ab4837ce461 schema:name Springer Nature - SN SciGraph project
24 rdf:type schema:Organization
25 N52c5d410dec54a69a44f1c5942931ea3 schema:name dimensions_id
26 schema:value pub.1108495019
27 rdf:type schema:PropertyValue
28 N6fc47d94b7444ab6a226e95154c82b1c schema:name doi
29 schema:value 10.1007/bfb0017213
30 rdf:type schema:PropertyValue
31 Nb6fedb08b90e44d3aa9f6a076772bdaa schema:familyName Morik
32 schema:givenName Katharina
33 rdf:type schema:Person
34 Nbd5cc81054de415eaf77dd718a06934d schema:location Berlin, Heidelberg
35 schema:name Springer Berlin Heidelberg
36 rdf:type schema:Organisation
37 Ncbf3a4509a9044afa1ac027b1eb4fb0d schema:name readcube_id
38 schema:value c8fc804cc434acf7b89d874fffbcea41a5a367829844649e9f9cc67e655bfbd0
39 rdf:type schema:PropertyValue
40 Ne1bd00ad1cc045e093b43776066dc254 rdf:first Nb6fedb08b90e44d3aa9f6a076772bdaa
41 rdf:rest rdf:nil
 




Preview window. Press ESC to close (or click here)


...