Extending explanation-based generalization by abstraction operators View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

Igor Mozetič , Christian Holzbaur

ABSTRACT

We present two contributions to the explanation-based generalization techniques. First, the operationality criterion is extended by abstraction operators. These allow for the goal concept to be reformulated not only in terms of operational predicates, but also allow to delete irrelevant arguments, and to collapse indistinguishable constants. The abstraction algorithm is presented and illustrated by an example. Second, the domain theory is not restricted to variables with finite (discrete) domains, but can deal with infinite (e.g., real-valued) domains as well. The interpretation and abstraction are effectively handled through constraint logic programming mechanisms. In the paper we concentrate on the role of CLP(ℜ) — a solver for systems of linear equations and inequalities over reals. More... »

PAGES

282-297

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0017021

DOI

http://dx.doi.org/10.1007/bfb0017021

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012623624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mozeti\u010d", 
        "givenName": "Igor", 
        "id": "sg:person.01340706300.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340706300.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence, and Department of Medical Cybernetics and Artificial Intelligence, University of Vienna, Freyung 6, A-1010, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, and Department of Medical Cybernetics and Artificial Intelligence, University of Vienna, Freyung 6, A-1010, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holzbaur", 
        "givenName": "Christian", 
        "id": "sg:person.015052747435.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052747435.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "We present two contributions to the explanation-based generalization techniques. First, the operationality criterion is extended by abstraction operators. These allow for the goal concept to be reformulated not only in terms of operational predicates, but also allow to delete irrelevant arguments, and to collapse indistinguishable constants. The abstraction algorithm is presented and illustrated by an example. Second, the domain theory is not restricted to variables with finite (discrete) domains, but can deal with infinite (e.g., real-valued) domains as well. The interpretation and abstraction are effectively handled through constraint logic programming mechanisms. In the paper we concentrate on the role of CLP(\u211c) \u2014 a solver for systems of linear equations and inequalities over reals.", 
    "editor": [
      {
        "familyName": "Kodratoff", 
        "givenName": "Yves", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0017021", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-53816-5", 
        "978-3-540-46308-5"
      ], 
      "name": "Machine Learning \u2014 EWSL-91", 
      "type": "Book"
    }, 
    "keywords": [
      "explanation-based generalization", 
      "abstraction operator", 
      "generalization techniques", 
      "abstraction algorithm", 
      "operationality criteria", 
      "goal concept", 
      "domain theory", 
      "programming mechanism", 
      "irrelevant arguments", 
      "finite domain", 
      "operators", 
      "algorithm", 
      "abstraction", 
      "predicates", 
      "domain", 
      "infinite domain", 
      "solver", 
      "linear equations", 
      "concept", 
      "system", 
      "technique", 
      "Real", 
      "example", 
      "generalization", 
      "terms", 
      "contribution", 
      "criteria", 
      "theory", 
      "interpretation", 
      "variables", 
      "mechanism", 
      "argument", 
      "role", 
      "equations", 
      "inequality", 
      "constants", 
      "paper", 
      "operational predicates"
    ], 
    "name": "Extending explanation-based generalization by abstraction operators", 
    "pagination": "282-297", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012623624"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0017021"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0017021", 
      "https://app.dimensions.ai/details/publication/pub.1012623624"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_408.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0017021"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0017021'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0017021'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0017021'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0017021'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0017021 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author Nc1848263862947e0937ae9b6d26344d7
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description We present two contributions to the explanation-based generalization techniques. First, the operationality criterion is extended by abstraction operators. These allow for the goal concept to be reformulated not only in terms of operational predicates, but also allow to delete irrelevant arguments, and to collapse indistinguishable constants. The abstraction algorithm is presented and illustrated by an example. Second, the domain theory is not restricted to variables with finite (discrete) domains, but can deal with infinite (e.g., real-valued) domains as well. The interpretation and abstraction are effectively handled through constraint logic programming mechanisms. In the paper we concentrate on the role of CLP(ℜ) — a solver for systems of linear equations and inequalities over reals.
7 schema:editor Nd6e3671940b94721a854cd976f0c8219
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nacdd145793ef4dffaf9cd2c9017d320a
12 schema:keywords Real
13 abstraction
14 abstraction algorithm
15 abstraction operator
16 algorithm
17 argument
18 concept
19 constants
20 contribution
21 criteria
22 domain
23 domain theory
24 equations
25 example
26 explanation-based generalization
27 finite domain
28 generalization
29 generalization techniques
30 goal concept
31 inequality
32 infinite domain
33 interpretation
34 irrelevant arguments
35 linear equations
36 mechanism
37 operational predicates
38 operationality criteria
39 operators
40 paper
41 predicates
42 programming mechanism
43 role
44 solver
45 system
46 technique
47 terms
48 theory
49 variables
50 schema:name Extending explanation-based generalization by abstraction operators
51 schema:pagination 282-297
52 schema:productId N242c892ae76542afa6a283cd0346f073
53 N887f010dfe4c4c42812b0e9cf3b732d3
54 schema:publisher N37233a28c893470b8fd97d88c00f6ec5
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012623624
56 https://doi.org/10.1007/bfb0017021
57 schema:sdDatePublished 2022-05-20T07:47
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ne99065ac55794601a908a17b83fc92e9
60 schema:url https://doi.org/10.1007/bfb0017021
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N242c892ae76542afa6a283cd0346f073 schema:name doi
65 schema:value 10.1007/bfb0017021
66 rdf:type schema:PropertyValue
67 N37233a28c893470b8fd97d88c00f6ec5 schema:name Springer Nature
68 rdf:type schema:Organisation
69 N47be66521f424109a7040fc2bf5e2508 rdf:first sg:person.015052747435.75
70 rdf:rest rdf:nil
71 N887f010dfe4c4c42812b0e9cf3b732d3 schema:name dimensions_id
72 schema:value pub.1012623624
73 rdf:type schema:PropertyValue
74 Nacdd145793ef4dffaf9cd2c9017d320a schema:isbn 978-3-540-46308-5
75 978-3-540-53816-5
76 schema:name Machine Learning — EWSL-91
77 rdf:type schema:Book
78 Nc1848263862947e0937ae9b6d26344d7 rdf:first sg:person.01340706300.17
79 rdf:rest N47be66521f424109a7040fc2bf5e2508
80 Nd6e3671940b94721a854cd976f0c8219 rdf:first Nf3af7404eba74f4180decc0f22cf1330
81 rdf:rest rdf:nil
82 Ne99065ac55794601a908a17b83fc92e9 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nf3af7404eba74f4180decc0f22cf1330 schema:familyName Kodratoff
85 schema:givenName Yves
86 rdf:type schema:Person
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
91 schema:name Computer Software
92 rdf:type schema:DefinedTerm
93 sg:person.01340706300.17 schema:affiliation grid-institutes:grid.432019.d
94 schema:familyName Mozetič
95 schema:givenName Igor
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340706300.17
97 rdf:type schema:Person
98 sg:person.015052747435.75 schema:affiliation grid-institutes:grid.10420.37
99 schema:familyName Holzbaur
100 schema:givenName Christian
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052747435.75
102 rdf:type schema:Person
103 grid-institutes:grid.10420.37 schema:alternateName Austrian Research Institute for Artificial Intelligence, and Department of Medical Cybernetics and Artificial Intelligence, University of Vienna, Freyung 6, A-1010, Vienna, Austria
104 schema:name Austrian Research Institute for Artificial Intelligence, and Department of Medical Cybernetics and Artificial Intelligence, University of Vienna, Freyung 6, A-1010, Vienna, Austria
105 rdf:type schema:Organization
106 grid-institutes:grid.432019.d schema:alternateName Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010, Vienna, Austria
107 schema:name Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010, Vienna, Austria
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...