Geometrical structure and thermal phase transition of the dilute s-state Potts and n-vector model at the percolation threshold View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1981

AUTHORS

Antonio Coniglio

ABSTRACT

A new relation is given in percolation theory from which follows that the backbone of the incipient infinite cluster is made of singly-connected links and “blobs”, the number of links diverge with an universal exponent 1. It is also shown that this exponent characterizes the crossover exponent of the dilute s-state Potts model while for the n-vector model is given by the low density resistivity exponent. More... »

PAGES

51-55

Book

TITLE

Disordered Systems and Localization

ISBN

978-3-540-11163-4
978-3-540-38636-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0012544

DOI

http://dx.doi.org/10.1007/bfb0012544

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008734256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Center for Polymer Studies, Boston University, 02215\u00a0Boston, MA., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "Antonio", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1981", 
    "datePublishedReg": "1981-01-01", 
    "description": "A new relation is given in percolation theory from which follows that the backbone of the incipient infinite cluster is made of singly-connected links and \u201cblobs\u201d, the number of links diverge with an universal exponent 1. It is also shown that this exponent characterizes the crossover exponent of the dilute s-state Potts model while for the n-vector model is given by the low density resistivity exponent.", 
    "editor": [
      {
        "familyName": "Castellani", 
        "givenName": "Claudio", 
        "type": "Person"
      }, 
      {
        "familyName": "Di Castro", 
        "givenName": "Carlo", 
        "type": "Person"
      }, 
      {
        "familyName": "Peliti", 
        "givenName": "Luca", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0012544", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-11163-4", 
        "978-3-540-38636-0"
      ], 
      "name": "Disordered Systems and Localization", 
      "type": "Book"
    }, 
    "name": "Geometrical structure and thermal phase transition of the dilute s-state Potts and n-vector model at the percolation threshold", 
    "pagination": "51-55", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0012544"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "299cf698c4bd337d65f456738f321c6e25246a52dd8f3cbe1a678b2ae6d5af0d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008734256"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0012544", 
      "https://app.dimensions.ai/details/publication/pub.1008734256"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000015.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0012544"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0012544'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0012544'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0012544'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0012544'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0012544 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N862bafdfad524c83ac46f3116d798fb1
4 schema:datePublished 1981
5 schema:datePublishedReg 1981-01-01
6 schema:description A new relation is given in percolation theory from which follows that the backbone of the incipient infinite cluster is made of singly-connected links and “blobs”, the number of links diverge with an universal exponent 1. It is also shown that this exponent characterizes the crossover exponent of the dilute s-state Potts model while for the n-vector model is given by the low density resistivity exponent.
7 schema:editor Nfb33329223744b99ae539f417d826e76
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4af2f477ac8a41ee9046198918b3cef3
12 schema:name Geometrical structure and thermal phase transition of the dilute s-state Potts and n-vector model at the percolation threshold
13 schema:pagination 51-55
14 schema:productId N17fc239069624a5f8aacb22c65eace66
15 N2dc806d2effb4cb3b2ed71db828eb8c2
16 N947d35908bfb469ba7ebcab48416f8d2
17 schema:publisher N043af36e71974a38b1b23cd8245710c8
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008734256
19 https://doi.org/10.1007/bfb0012544
20 schema:sdDatePublished 2019-04-15T20:47
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N40de90d7ae5844fa83040b81b4f2c883
23 schema:url http://link.springer.com/10.1007/BFb0012544
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N043af36e71974a38b1b23cd8245710c8 schema:location Berlin, Heidelberg
28 schema:name Springer Berlin Heidelberg
29 rdf:type schema:Organisation
30 N09cff75ebd2a4fb5aa8803a92c0253c6 rdf:first N47678812e7d041c2bbbfc9d42277e5cd
31 rdf:rest rdf:nil
32 N17fc239069624a5f8aacb22c65eace66 schema:name dimensions_id
33 schema:value pub.1008734256
34 rdf:type schema:PropertyValue
35 N2dc806d2effb4cb3b2ed71db828eb8c2 schema:name readcube_id
36 schema:value 299cf698c4bd337d65f456738f321c6e25246a52dd8f3cbe1a678b2ae6d5af0d
37 rdf:type schema:PropertyValue
38 N3956980181b6460cb565d3832388c53a schema:familyName Di Castro
39 schema:givenName Carlo
40 rdf:type schema:Person
41 N40de90d7ae5844fa83040b81b4f2c883 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N47678812e7d041c2bbbfc9d42277e5cd schema:familyName Peliti
44 schema:givenName Luca
45 rdf:type schema:Person
46 N4af2f477ac8a41ee9046198918b3cef3 schema:isbn 978-3-540-11163-4
47 978-3-540-38636-0
48 schema:name Disordered Systems and Localization
49 rdf:type schema:Book
50 N862bafdfad524c83ac46f3116d798fb1 rdf:first sg:person.01227217136.16
51 rdf:rest rdf:nil
52 N947d35908bfb469ba7ebcab48416f8d2 schema:name doi
53 schema:value 10.1007/bfb0012544
54 rdf:type schema:PropertyValue
55 Nb09ac70ec0d44b6da67b2cb0f0565ba5 schema:familyName Castellani
56 schema:givenName Claudio
57 rdf:type schema:Person
58 Nbd753185e3114422838ef4ab98db5e8d rdf:first N3956980181b6460cb565d3832388c53a
59 rdf:rest N09cff75ebd2a4fb5aa8803a92c0253c6
60 Nfb33329223744b99ae539f417d826e76 rdf:first Nb09ac70ec0d44b6da67b2cb0f0565ba5
61 rdf:rest Nbd753185e3114422838ef4ab98db5e8d
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:person.01227217136.16 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
69 schema:familyName Coniglio
70 schema:givenName Antonio
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
74 schema:name Center for Polymer Studies, Boston University, 02215 Boston, MA., USA
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...