Utilization of xylose by bacteria, yeasts, and fungi View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

Thomas W. Jeffries

ABSTRACT

Hemicellulosic sugars, especially d-xylose, are relatively abundant in agricultural and forestry residues. Moreover, they can be recovered from the hemicelluloses by acid hydrolysis more readily and in better yields than can d-glucose from cellulose. These factors favor hemicellulosic sugars as a feedstock for production of ethanol and other chemicals. Unfortunately, d-xylose is not so readily utilized as d-glucose for the production of chemicals by microorganisms. The reason may lie in the biochemical pathways used for pentose and hexose metabolism. Different pathways are employed by prokaryotes and eukaryotes in the initial stages of pentose assimilation. Transport and phosphorylation possibly limit the overall rate of d-xylose utilization. The intermediary steps of pentose metabolism are generally similar for both bacteria and fungi, but substantial variations exist. Phosphoketolase is present in some yeasts and bacteria able to use pentoses. Regulation of the oxidative pentose phosphate pathway occurs at d-glucose-6-phosphate dehydrogenase by the intracellular concentration of NADPH. Regulation of nonoxidative pentose metabolism is not well understood. In some yeasts and fungi, conversion of d-xylose to ethanol takes place under aerobic or anaerobic conditions with rates and yields generally higher in the former than in the latter. Xylitol and acetic acid are major byproducts of such conversions. Many yeasts are capable of utilizing d-xylose for the production of ethanol. Direct conversion of d-xylose to ethanol is compared with two-stage processes employing yeasts and d-xylose isomerase. More... »

PAGES

1-32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0009101

DOI

http://dx.doi.org/10.1007/bfb0009101

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024022229

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6437152


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cellulose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungi", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lignin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polysaccharides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Xylose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yeasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "U.S. Dept. of Agriculture, Microbiologist. Forest Products Laboratory, P.O. Box 5130, 53 705\u00a0Madison, Wisconsin, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeffries", 
        "givenName": "Thomas W.", 
        "id": "sg:person.010165443451.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010165443451.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0076-6879(66)09042-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-025382-4.50018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042474470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(66)09040-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046166388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(66)09039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053564009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4159/harvard.9780674863569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099452089"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "Hemicellulosic sugars, especially d-xylose, are relatively abundant in agricultural and forestry residues. Moreover, they can be recovered from the hemicelluloses by acid hydrolysis more readily and in better yields than can d-glucose from cellulose. These factors favor hemicellulosic sugars as a feedstock for production of ethanol and other chemicals. Unfortunately, d-xylose is not so readily utilized as d-glucose for the production of chemicals by microorganisms. The reason may lie in the biochemical pathways used for pentose and hexose metabolism. Different pathways are employed by prokaryotes and eukaryotes in the initial stages of pentose assimilation. Transport and phosphorylation possibly limit the overall rate of d-xylose utilization. The intermediary steps of pentose metabolism are generally similar for both bacteria and fungi, but substantial variations exist. Phosphoketolase is present in some yeasts and bacteria able to use pentoses. Regulation of the oxidative pentose phosphate pathway occurs at d-glucose-6-phosphate dehydrogenase by the intracellular concentration of NADPH. Regulation of nonoxidative pentose metabolism is not well understood. In some yeasts and fungi, conversion of d-xylose to ethanol takes place under aerobic or anaerobic conditions with rates and yields generally higher in the former than in the latter. Xylitol and acetic acid are major byproducts of such conversions. Many yeasts are capable of utilizing d-xylose for the production of ethanol. Direct conversion of d-xylose to ethanol is compared with two-stage processes employing yeasts and d-xylose isomerase.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0009101", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-540-12182-X"
      ], 
      "name": "Pentoses and Lignin", 
      "type": "Book"
    }, 
    "name": "Utilization of xylose by bacteria, yeasts, and fungi", 
    "pagination": "1-32", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0009101"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "72720e126d495d4d1e7b797fad44b8fdf39994d79d769393e7f07d5f1740124e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024022229"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6437152"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin/Heidelberg", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0009101", 
      "https://app.dimensions.ai/details/publication/pub.1024022229"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000237.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0009101"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0009101'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0009101'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0009101'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0009101'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      22 PREDICATES      40 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0009101 schema:about N170e8a7244574ebfb809715b39f0dc2a
2 N1accf500e1dd4a6a9509e0660f210644
3 N484212de4b0a453481568e754fda19a0
4 N51fb695b8c254264a973f8e4740a97c5
5 Nb7dd400a03e04c69968e0d61bdd4be6e
6 Nd20bef1ff0114688b55f71f250b35238
7 Nd4df978eb08c43979829d2d0a8cc1f73
8 Ndb5d776a95a74ce4929007553aee4a3b
9 anzsrc-for:06
10 anzsrc-for:0605
11 schema:author N8082f93f24fa4c989700bd0c151e20a9
12 schema:citation https://doi.org/10.1016/0076-6879(66)09039-6
13 https://doi.org/10.1016/0076-6879(66)09040-2
14 https://doi.org/10.1016/0076-6879(66)09042-6
15 https://doi.org/10.1016/b978-0-08-025382-4.50018-6
16 https://doi.org/10.4159/harvard.9780674863569
17 schema:datePublished 1983
18 schema:datePublishedReg 1983-01-01
19 schema:description Hemicellulosic sugars, especially d-xylose, are relatively abundant in agricultural and forestry residues. Moreover, they can be recovered from the hemicelluloses by acid hydrolysis more readily and in better yields than can d-glucose from cellulose. These factors favor hemicellulosic sugars as a feedstock for production of ethanol and other chemicals. Unfortunately, d-xylose is not so readily utilized as d-glucose for the production of chemicals by microorganisms. The reason may lie in the biochemical pathways used for pentose and hexose metabolism. Different pathways are employed by prokaryotes and eukaryotes in the initial stages of pentose assimilation. Transport and phosphorylation possibly limit the overall rate of d-xylose utilization. The intermediary steps of pentose metabolism are generally similar for both bacteria and fungi, but substantial variations exist. Phosphoketolase is present in some yeasts and bacteria able to use pentoses. Regulation of the oxidative pentose phosphate pathway occurs at d-glucose-6-phosphate dehydrogenase by the intracellular concentration of NADPH. Regulation of nonoxidative pentose metabolism is not well understood. In some yeasts and fungi, conversion of d-xylose to ethanol takes place under aerobic or anaerobic conditions with rates and yields generally higher in the former than in the latter. Xylitol and acetic acid are major byproducts of such conversions. Many yeasts are capable of utilizing d-xylose for the production of ethanol. Direct conversion of d-xylose to ethanol is compared with two-stage processes employing yeasts and d-xylose isomerase.
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N460c8bc6ab3841c890e81471202d0203
24 schema:name Utilization of xylose by bacteria, yeasts, and fungi
25 schema:pagination 1-32
26 schema:productId N0204ef46fc924517bc3b26b3604c40f6
27 N1c94c21edfb940619addc1ed6526ec80
28 N45a377ea858c43b0a3f4fd86126f1f41
29 Nf6482a1e75b14f43af64966b5a9de054
30 schema:publisher Naf786742ae2f4a029c185dd92d3ab61a
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024022229
32 https://doi.org/10.1007/bfb0009101
33 schema:sdDatePublished 2019-04-15T21:55
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N74d58edb6e7645baa8867bc6fe1a9550
36 schema:url http://link.springer.com/10.1007/BFb0009101
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0204ef46fc924517bc3b26b3604c40f6 schema:name dimensions_id
41 schema:value pub.1024022229
42 rdf:type schema:PropertyValue
43 N170e8a7244574ebfb809715b39f0dc2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
44 schema:name Fungi
45 rdf:type schema:DefinedTerm
46 N1accf500e1dd4a6a9509e0660f210644 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Bacteria
48 rdf:type schema:DefinedTerm
49 N1c94c21edfb940619addc1ed6526ec80 schema:name readcube_id
50 schema:value 72720e126d495d4d1e7b797fad44b8fdf39994d79d769393e7f07d5f1740124e
51 rdf:type schema:PropertyValue
52 N45a377ea858c43b0a3f4fd86126f1f41 schema:name pubmed_id
53 schema:value 6437152
54 rdf:type schema:PropertyValue
55 N460c8bc6ab3841c890e81471202d0203 schema:isbn 3-540-12182-X
56 schema:name Pentoses and Lignin
57 rdf:type schema:Book
58 N484212de4b0a453481568e754fda19a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Cellulose
60 rdf:type schema:DefinedTerm
61 N51fb695b8c254264a973f8e4740a97c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Chemical Engineering
63 rdf:type schema:DefinedTerm
64 N74d58edb6e7645baa8867bc6fe1a9550 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N8082f93f24fa4c989700bd0c151e20a9 rdf:first sg:person.010165443451.05
67 rdf:rest rdf:nil
68 Naf786742ae2f4a029c185dd92d3ab61a schema:location Berlin/Heidelberg
69 schema:name Springer-Verlag
70 rdf:type schema:Organisation
71 Nb7dd400a03e04c69968e0d61bdd4be6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Lignin
73 rdf:type schema:DefinedTerm
74 Nbf71e512f7f742d6a1bea8060a319545 schema:name U.S. Dept. of Agriculture, Microbiologist. Forest Products Laboratory, P.O. Box 5130, 53 705 Madison, Wisconsin, USA
75 rdf:type schema:Organization
76 Nd20bef1ff0114688b55f71f250b35238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Xylose
78 rdf:type schema:DefinedTerm
79 Nd4df978eb08c43979829d2d0a8cc1f73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Polysaccharides
81 rdf:type schema:DefinedTerm
82 Ndb5d776a95a74ce4929007553aee4a3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Yeasts
84 rdf:type schema:DefinedTerm
85 Nf6482a1e75b14f43af64966b5a9de054 schema:name doi
86 schema:value 10.1007/bfb0009101
87 rdf:type schema:PropertyValue
88 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
89 schema:name Biological Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
92 schema:name Microbiology
93 rdf:type schema:DefinedTerm
94 sg:person.010165443451.05 schema:affiliation Nbf71e512f7f742d6a1bea8060a319545
95 schema:familyName Jeffries
96 schema:givenName Thomas W.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010165443451.05
98 rdf:type schema:Person
99 https://doi.org/10.1016/0076-6879(66)09039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053564009
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0076-6879(66)09040-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046166388
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0076-6879(66)09042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003437629
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/b978-0-08-025382-4.50018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042474470
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4159/harvard.9780674863569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099452089
108 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...