Optimal control problems under disturbances View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

Hans Josef Pesch

ABSTRACT

Perturbations in optimal control problems are discussed. Problems including those with state and/or control constraints and discontinuities are considered. The perturbations may appear in the functional, as well as in the dynamics, the boundary conditions or the inequality constraints. It is shown that an optimal solution of the disturbed control problem depending continuously differentiably upon the perturbations exists in a neighborhood of an optimal solution of the undisturbed problem under an assumption which has to be intrinsically fulfilled for virtually all of the important numerical methods for the computation of boundary value problems. These methods may be used when the multipoint boundary value problem resulting from the necessary conditions has to be solved. More... »

PAGES

377-386

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0008389

DOI

http://dx.doi.org/10.1007/bfb0008389

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016278372


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstra\u00dfe 21, D-8000, M\u00fcnchen 2", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Mathematisches Institut, Technische Universit\u00e4t M\u00fcnchen, Arcisstra\u00dfe 21, D-8000, M\u00fcnchen 2"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "Hans Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "Perturbations in optimal control problems are discussed. Problems including those with state and/or control constraints and discontinuities are considered. The perturbations may appear in the functional, as well as in the dynamics, the boundary conditions or the inequality constraints. It is shown that an optimal solution of the disturbed control problem depending continuously differentiably upon the perturbations exists in a neighborhood of an optimal solution of the undisturbed problem under an assumption which has to be intrinsically fulfilled for virtually all of the important numerical methods for the computation of boundary value problems. These methods may be used when the multipoint boundary value problem resulting from the necessary conditions has to be solved.", 
    "editor": [
      {
        "familyName": "Sebastian", 
        "givenName": "H. -J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tammer", 
        "givenName": "K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0008389", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-540-52659-5"
      ], 
      "name": "System Modelling and Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "optimal control problem", 
      "boundary value problem", 
      "control problem", 
      "value problem", 
      "optimal solution", 
      "multipoint boundary value problem", 
      "important numerical methods", 
      "control constraints", 
      "inequality constraints", 
      "numerical method", 
      "boundary conditions", 
      "necessary condition", 
      "perturbations", 
      "problem", 
      "constraints", 
      "solution", 
      "computation", 
      "dynamics", 
      "discontinuities", 
      "assumption", 
      "neighborhood", 
      "disturbances", 
      "conditions", 
      "state", 
      "method"
    ], 
    "name": "Optimal control problems under disturbances", 
    "pagination": "377-386", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016278372"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0008389"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0008389", 
      "https://app.dimensions.ai/details/publication/pub.1016278372"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_405.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/bfb0008389"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0008389'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0008389'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0008389'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0008389'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      22 PREDICATES      51 URIs      43 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0008389 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author N05034903e2454509af5f036c3e7b69b2
5 schema:datePublished 1990
6 schema:datePublishedReg 1990-01-01
7 schema:description Perturbations in optimal control problems are discussed. Problems including those with state and/or control constraints and discontinuities are considered. The perturbations may appear in the functional, as well as in the dynamics, the boundary conditions or the inequality constraints. It is shown that an optimal solution of the disturbed control problem depending continuously differentiably upon the perturbations exists in a neighborhood of an optimal solution of the undisturbed problem under an assumption which has to be intrinsically fulfilled for virtually all of the important numerical methods for the computation of boundary value problems. These methods may be used when the multipoint boundary value problem resulting from the necessary conditions has to be solved.
8 schema:editor Ncc9bfa308bb34d9a87e9e2729ffcf68e
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf N17920074d67044caa5a78068e091bb0a
12 schema:keywords assumption
13 boundary conditions
14 boundary value problem
15 computation
16 conditions
17 constraints
18 control constraints
19 control problem
20 discontinuities
21 disturbances
22 dynamics
23 important numerical methods
24 inequality constraints
25 method
26 multipoint boundary value problem
27 necessary condition
28 neighborhood
29 numerical method
30 optimal control problem
31 optimal solution
32 perturbations
33 problem
34 solution
35 state
36 value problem
37 schema:name Optimal control problems under disturbances
38 schema:pagination 377-386
39 schema:productId N0c9014d9816f445b9e31b24e0b1c2d51
40 Nf8b8d9a33b5349d38332f2bae31a2b8c
41 schema:publisher N9e4b3d6fd82d4201980ed4006a8caa53
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016278372
43 https://doi.org/10.1007/bfb0008389
44 schema:sdDatePublished 2022-09-02T16:15
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N8b556b1490ac4d939c93cf19d81c6f64
47 schema:url https://doi.org/10.1007/bfb0008389
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N05034903e2454509af5f036c3e7b69b2 rdf:first sg:person.014543723551.22
52 rdf:rest rdf:nil
53 N0c9014d9816f445b9e31b24e0b1c2d51 schema:name doi
54 schema:value 10.1007/bfb0008389
55 rdf:type schema:PropertyValue
56 N17920074d67044caa5a78068e091bb0a schema:isbn 3-540-52659-5
57 schema:name System Modelling and Optimization
58 rdf:type schema:Book
59 N7598ab1b49334b2da3947d659fe8badf rdf:first N990ebde9b8824d629ad5e947473ae54f
60 rdf:rest rdf:nil
61 N8b556b1490ac4d939c93cf19d81c6f64 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N990ebde9b8824d629ad5e947473ae54f schema:familyName Tammer
64 schema:givenName K.
65 rdf:type schema:Person
66 N9e4b3d6fd82d4201980ed4006a8caa53 schema:name Springer Nature
67 rdf:type schema:Organisation
68 Ncaa67a3108774b6693b793d513dfb8a9 schema:familyName Sebastian
69 schema:givenName H. -J.
70 rdf:type schema:Person
71 Ncc9bfa308bb34d9a87e9e2729ffcf68e rdf:first Ncaa67a3108774b6693b793d513dfb8a9
72 rdf:rest N7598ab1b49334b2da3947d659fe8badf
73 Nf8b8d9a33b5349d38332f2bae31a2b8c schema:name dimensions_id
74 schema:value pub.1016278372
75 rdf:type schema:PropertyValue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
80 schema:name Applied Mathematics
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
83 schema:name Numerical and Computational Mathematics
84 rdf:type schema:DefinedTerm
85 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.6936.a
86 schema:familyName Pesch
87 schema:givenName Hans Josef
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
89 rdf:type schema:Person
90 grid-institutes:grid.6936.a schema:alternateName Mathematisches Institut, Technische Universität München, Arcisstraße 21, D-8000, München 2
91 schema:name Mathematisches Institut, Technische Universität München, Arcisstraße 21, D-8000, München 2
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...