A robust adaptive procedure for solving a non Gaussian identification problem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1978

AUTHORS

A. Benveniste , M. Goursat , G. Ruget

ABSTRACT

Consider an unknown linear time-invariant system S without control, drived by random variables with known law. We are interested in the identification of S from the output. The usual results work only under the major assumption : S is minimum phase. In our case the system S is non minimum phase and the litterature gives only a negative result : the identification is impossible for a gaussian driving noise. For a large class of other input laws we give here a solution to this problem and present some numerical results for a concrete case, origin of our study: the blind settling phase of an equalizer in data communication. More... »

PAGES

128-138

Book

TITLE

Optimization Techniques Part 1

ISBN

3-540-08707-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0007231

DOI

http://dx.doi.org/10.1007/bfb0007231

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021867341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Irisa \u2014 Universit\u00e9 de Rennes, Avenue du G-al Leclerc BP 25A, 35031\u00a0Rennes Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benveniste", 
        "givenName": "A.", 
        "id": "sg:person.011174600625.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011174600625.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Iria \u2014 Laboria, Domaine de Voluceau BP 105, 78150\u00a0Le Chesnay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goursat", 
        "givenName": "M.", 
        "id": "sg:person.012516010214.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516010214.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Irisa \u2014 Universit\u00e9 de Rennes, Avenue du G-al Leclerc BP 25A, 35031\u00a0Rennes Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruget", 
        "givenName": "G.", 
        "id": "sg:person.010327131263.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010327131263.54"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1978", 
    "datePublishedReg": "1978-01-01", 
    "description": "Consider an unknown linear time-invariant system S without control, drived by random variables with known law. We are interested in the identification of S from the output. The usual results work only under the major assumption : S is minimum phase. In our case the system S is non minimum phase and the litterature gives only a negative result : the identification is impossible for a gaussian driving noise. For a large class of other input laws we give here a solution to this problem and present some numerical results for a concrete case, origin of our study: the blind settling phase of an equalizer in data communication.", 
    "editor": [
      {
        "familyName": "Stoer", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0007231", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-540-08707-9"
      ], 
      "name": "Optimization Techniques Part 1", 
      "type": "Book"
    }, 
    "name": "A robust adaptive procedure for solving a non Gaussian identification problem", 
    "pagination": "128-138", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0007231"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "682ea06db7a765a83e127456af72237eeefa0828a9fa4a180c06f4fdb8207f19"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021867341"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin/Heidelberg", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0007231", 
      "https://app.dimensions.ai/details/publication/pub.1021867341"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000037.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0007231"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0007231'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0007231'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0007231'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0007231'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0007231 schema:about anzsrc-for:18
2 anzsrc-for:1801
3 schema:author Nf9766089fb8b42838671b321eb3b7cce
4 schema:datePublished 1978
5 schema:datePublishedReg 1978-01-01
6 schema:description Consider an unknown linear time-invariant system S without control, drived by random variables with known law. We are interested in the identification of S from the output. The usual results work only under the major assumption : S is minimum phase. In our case the system S is non minimum phase and the litterature gives only a negative result : the identification is impossible for a gaussian driving noise. For a large class of other input laws we give here a solution to this problem and present some numerical results for a concrete case, origin of our study: the blind settling phase of an equalizer in data communication.
7 schema:editor N1ab8d69155dd4bfd89d200a686cedf0e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne18b4e64abcd45a385628bbc3d8c9027
12 schema:name A robust adaptive procedure for solving a non Gaussian identification problem
13 schema:pagination 128-138
14 schema:productId N3424d9cb58554b7e9cadae01ff9f91fc
15 Ndca3bbc6cb7143a194c9f9d01f51e1c9
16 Neb6fd494c8454e999ccf34f01e2aef2c
17 schema:publisher Nf00b49a256594b89ad561ac8a9f7e88f
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021867341
19 https://doi.org/10.1007/bfb0007231
20 schema:sdDatePublished 2019-04-15T17:00
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N1df713119ab54dbd91142e53a8ec310a
23 schema:url http://link.springer.com/10.1007/BFb0007231
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N1ab8d69155dd4bfd89d200a686cedf0e rdf:first N1ed10f8d61bd411b87d9fc7080d086ec
28 rdf:rest rdf:nil
29 N1df713119ab54dbd91142e53a8ec310a schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N1ed10f8d61bd411b87d9fc7080d086ec schema:familyName Stoer
32 schema:givenName J.
33 rdf:type schema:Person
34 N3424d9cb58554b7e9cadae01ff9f91fc schema:name dimensions_id
35 schema:value pub.1021867341
36 rdf:type schema:PropertyValue
37 N42b1664583604dab90b55870d74c2bba rdf:first sg:person.012516010214.80
38 rdf:rest N6a5401495d1d46b7abdc8fee4314d0ab
39 N6a5401495d1d46b7abdc8fee4314d0ab rdf:first sg:person.010327131263.54
40 rdf:rest rdf:nil
41 N6c48cfa867144853b3965dc6a7d9250e schema:name Irisa — Université de Rennes, Avenue du G-al Leclerc BP 25A, 35031 Rennes Cedex, France
42 rdf:type schema:Organization
43 N8d78ed9fc5154335bedb2b4d53abc1ae schema:name Irisa — Université de Rennes, Avenue du G-al Leclerc BP 25A, 35031 Rennes Cedex, France
44 rdf:type schema:Organization
45 N9d5ef62a23cd4e8d8b688fb50347bd7c schema:name Iria — Laboria, Domaine de Voluceau BP 105, 78150 Le Chesnay, France
46 rdf:type schema:Organization
47 Ndca3bbc6cb7143a194c9f9d01f51e1c9 schema:name doi
48 schema:value 10.1007/bfb0007231
49 rdf:type schema:PropertyValue
50 Ne18b4e64abcd45a385628bbc3d8c9027 schema:isbn 3-540-08707-9
51 schema:name Optimization Techniques Part 1
52 rdf:type schema:Book
53 Neb6fd494c8454e999ccf34f01e2aef2c schema:name readcube_id
54 schema:value 682ea06db7a765a83e127456af72237eeefa0828a9fa4a180c06f4fdb8207f19
55 rdf:type schema:PropertyValue
56 Nf00b49a256594b89ad561ac8a9f7e88f schema:location Berlin/Heidelberg
57 schema:name Springer-Verlag
58 rdf:type schema:Organisation
59 Nf9766089fb8b42838671b321eb3b7cce rdf:first sg:person.011174600625.42
60 rdf:rest N42b1664583604dab90b55870d74c2bba
61 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
62 schema:name Law and Legal Studies
63 rdf:type schema:DefinedTerm
64 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Law
66 rdf:type schema:DefinedTerm
67 sg:person.010327131263.54 schema:affiliation N6c48cfa867144853b3965dc6a7d9250e
68 schema:familyName Ruget
69 schema:givenName G.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010327131263.54
71 rdf:type schema:Person
72 sg:person.011174600625.42 schema:affiliation N8d78ed9fc5154335bedb2b4d53abc1ae
73 schema:familyName Benveniste
74 schema:givenName A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011174600625.42
76 rdf:type schema:Person
77 sg:person.012516010214.80 schema:affiliation N9d5ef62a23cd4e8d8b688fb50347bd7c
78 schema:familyName Goursat
79 schema:givenName M.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516010214.80
81 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...