On the smoothness of the value function along optimal trajectories View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

Piermarco Cannarsa , Fausto Gozzi

ABSTRACT

We consider a finite horizon optimal control problem in Mayer form for a system governed by a semilinear state equation. We prove that, under suitable assumptions, the associated value function is differentiable along optimal trajectories. For this purpose we prove a backward uniqueness result for a class of abstract evolution equation of parabolic type. More... »

PAGES

60-81

Book

TITLE

Boundary Control and Boundary Variation

ISBN

3-540-55351-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0006688

DOI

http://dx.doi.org/10.1007/bfb0006688

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030439664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica, II, Universit\u00e0 di Roma \u201cTor Vergata\u201d Via Fontanile di Carcaricola, 00133\u00a0Roma"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica, via F. Buonarroti 2, 56127\u00a0Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gozzi", 
        "givenName": "Fausto", 
        "id": "sg:person.011146033103.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011146033103.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "We consider a finite horizon optimal control problem in Mayer form for a system governed by a semilinear state equation. We prove that, under suitable assumptions, the associated value function is differentiable along optimal trajectories. For this purpose we prove a backward uniqueness result for a class of abstract evolution equation of parabolic type.", 
    "editor": [
      {
        "familyName": "Zol\u00e9esio", 
        "givenName": "Jean Paul", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0006688", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-540-55351-7"
      ], 
      "name": "Boundary Control and Boundary Variation", 
      "type": "Book"
    }, 
    "name": "On the smoothness of the value function along optimal trajectories", 
    "pagination": "60-81", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0006688"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "910331260ff90c818c10003b939c267c92295351b86f0f62484a6c7a6b2242ee"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030439664"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin/Heidelberg", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0006688", 
      "https://app.dimensions.ai/details/publication/pub.1030439664"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000052.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0006688"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0006688'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0006688'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0006688'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0006688'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0006688 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nc12f71383495466eaca7f6a9d747c4b0
4 schema:datePublished 1992
5 schema:datePublishedReg 1992-01-01
6 schema:description We consider a finite horizon optimal control problem in Mayer form for a system governed by a semilinear state equation. We prove that, under suitable assumptions, the associated value function is differentiable along optimal trajectories. For this purpose we prove a backward uniqueness result for a class of abstract evolution equation of parabolic type.
7 schema:editor N6c308bc9717c437ea6aea580de70a380
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na1c8800254924520a6987e0f42c50633
12 schema:name On the smoothness of the value function along optimal trajectories
13 schema:pagination 60-81
14 schema:productId N1a0ac63ee63141098ff80cd2d885b6f1
15 Nbadcbc207fab43d2ae4a8764c7f08591
16 Ncd0dbe2f85af448cb5d91f899983e467
17 schema:publisher N07dd96c942524653b228530047e884f2
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030439664
19 https://doi.org/10.1007/bfb0006688
20 schema:sdDatePublished 2019-04-15T12:18
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N1f601a9d94e1497c8afc3a79afd9417a
23 schema:url http://link.springer.com/10.1007/BFb0006688
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N07dd96c942524653b228530047e884f2 schema:location Berlin/Heidelberg
28 schema:name Springer-Verlag
29 rdf:type schema:Organisation
30 N17c3642b14fa4a40b66947d33f734610 schema:familyName Zoléesio
31 schema:givenName Jean Paul
32 rdf:type schema:Person
33 N1a0ac63ee63141098ff80cd2d885b6f1 schema:name readcube_id
34 schema:value 910331260ff90c818c10003b939c267c92295351b86f0f62484a6c7a6b2242ee
35 rdf:type schema:PropertyValue
36 N1f601a9d94e1497c8afc3a79afd9417a schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N6c308bc9717c437ea6aea580de70a380 rdf:first N17c3642b14fa4a40b66947d33f734610
39 rdf:rest rdf:nil
40 N6e4db7880b8c434293b6439ca1156f3a schema:name Dipartimento di Matematica, II, Università di Roma “Tor Vergata” Via Fontanile di Carcaricola, 00133 Roma
41 rdf:type schema:Organization
42 N87e57d08d3d54ed98e0ed942e8f9b838 schema:name Dipartimento di Matematica, via F. Buonarroti 2, 56127 Pisa, Italy
43 rdf:type schema:Organization
44 Na1c8800254924520a6987e0f42c50633 schema:isbn 3-540-55351-7
45 schema:name Boundary Control and Boundary Variation
46 rdf:type schema:Book
47 Nbadcbc207fab43d2ae4a8764c7f08591 schema:name doi
48 schema:value 10.1007/bfb0006688
49 rdf:type schema:PropertyValue
50 Nc12f71383495466eaca7f6a9d747c4b0 rdf:first sg:person.014257010655.09
51 rdf:rest Nfe97072d735447f8bab8f0bee3e7da35
52 Ncd0dbe2f85af448cb5d91f899983e467 schema:name dimensions_id
53 schema:value pub.1030439664
54 rdf:type schema:PropertyValue
55 Nfe97072d735447f8bab8f0bee3e7da35 rdf:first sg:person.011146033103.38
56 rdf:rest rdf:nil
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
61 schema:name Applied Mathematics
62 rdf:type schema:DefinedTerm
63 sg:person.011146033103.38 schema:affiliation N87e57d08d3d54ed98e0ed942e8f9b838
64 schema:familyName Gozzi
65 schema:givenName Fausto
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011146033103.38
67 rdf:type schema:Person
68 sg:person.014257010655.09 schema:affiliation N6e4db7880b8c434293b6439ca1156f3a
69 schema:familyName Cannarsa
70 schema:givenName Piermarco
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
72 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...