Redundancy relations and robust failure detection View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1985

AUTHORS

Edward Y. Chow , Xi-Cheng Lou , George C. Verghese , Alan S. Willsky

ABSTRACT

All failure detection methods are based on the use of redundancy, that is on (possible dynamic) relations among the measured variables. Consequently the robustness of the failure detection process depends to a great degree on the reliability of the redundancy relations given the inevitable presence of model uncertainties. In this paper we address the problem of determining redundancy relations which are optimally robust in a sense which includes the major issues of importance in practical failure detection and which provides us with a significant amount of intuition concerning the geometry of robust failure detection. More... »

PAGES

275-293

Book

TITLE

Detection of Abrupt Changes in Signals and Dynamical Systems

ISBN

3-540-16043-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bfb0006396

DOI

http://dx.doi.org/10.1007/bfb0006396

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052821872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 02139\u00a0Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chow", 
        "givenName": "Edward Y.", 
        "id": "sg:person.011136601066.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136601066.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 02139\u00a0Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lou", 
        "givenName": "Xi-Cheng", 
        "id": "sg:person.014775042133.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014775042133.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 02139\u00a0Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verghese", 
        "givenName": "George C.", 
        "id": "sg:person.0725124105.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725124105.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 02139\u00a0Cambridge, Massachusetts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willsky", 
        "givenName": "Alan S.", 
        "id": "sg:person.010070142507.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070142507.94"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "All failure detection methods are based on the use of redundancy, that is on (possible dynamic) relations among the measured variables. Consequently the robustness of the failure detection process depends to a great degree on the reliability of the redundancy relations given the inevitable presence of model uncertainties. In this paper we address the problem of determining redundancy relations which are optimally robust in a sense which includes the major issues of importance in practical failure detection and which provides us with a significant amount of intuition concerning the geometry of robust failure detection.", 
    "editor": [
      {
        "familyName": "Basseville", 
        "givenName": "Mich\u00e8le", 
        "type": "Person"
      }, 
      {
        "familyName": "Benveniste", 
        "givenName": "Albert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/bfb0006396", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "3-540-16043-4"
      ], 
      "name": "Detection of Abrupt Changes in Signals and Dynamical Systems", 
      "type": "Book"
    }, 
    "name": "Redundancy relations and robust failure detection", 
    "pagination": "275-293", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bfb0006396"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb9b3b44b57849f9240fd1ba5694f98eced067b1b34317618c922b42e55f0615"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052821872"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin/Heidelberg", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/bfb0006396", 
      "https://app.dimensions.ai/details/publication/pub.1052821872"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000091.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/BFb0006396"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bfb0006396'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bfb0006396'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bfb0006396'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bfb0006396'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bfb0006396 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N27ebdc11fd6a41abbd9ebbe833d611c1
4 schema:datePublished 1985
5 schema:datePublishedReg 1985-01-01
6 schema:description All failure detection methods are based on the use of redundancy, that is on (possible dynamic) relations among the measured variables. Consequently the robustness of the failure detection process depends to a great degree on the reliability of the redundancy relations given the inevitable presence of model uncertainties. In this paper we address the problem of determining redundancy relations which are optimally robust in a sense which includes the major issues of importance in practical failure detection and which provides us with a significant amount of intuition concerning the geometry of robust failure detection.
7 schema:editor Nb249aa9890df4b7884f4dee7180ecff3
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N5ff32904a042486dade56fd0d3b9d262
12 schema:name Redundancy relations and robust failure detection
13 schema:pagination 275-293
14 schema:productId N0286b531091d4bd5aa179242a143b62a
15 N31855be63556413db311acebeae39f58
16 Nfa0764a140a0495c9e4bf8ca933efbbb
17 schema:publisher N2df9bf59791d411db10a9a51faee8af3
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052821872
19 https://doi.org/10.1007/bfb0006396
20 schema:sdDatePublished 2019-04-16T00:38
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N9278f7af07f0469b852c63eb3bb2b8f4
23 schema:url http://link.springer.com/10.1007/BFb0006396
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N00282f5b882f4a6791abc038a5693124 rdf:first sg:person.014775042133.81
28 rdf:rest N804e70db1ade4cddbabbb5822f02d72d
29 N0286b531091d4bd5aa179242a143b62a schema:name doi
30 schema:value 10.1007/bfb0006396
31 rdf:type schema:PropertyValue
32 N27ebdc11fd6a41abbd9ebbe833d611c1 rdf:first sg:person.011136601066.73
33 rdf:rest N00282f5b882f4a6791abc038a5693124
34 N2df9bf59791d411db10a9a51faee8af3 schema:location Berlin/Heidelberg
35 schema:name Springer-Verlag
36 rdf:type schema:Organisation
37 N31855be63556413db311acebeae39f58 schema:name readcube_id
38 schema:value fb9b3b44b57849f9240fd1ba5694f98eced067b1b34317618c922b42e55f0615
39 rdf:type schema:PropertyValue
40 N3ef7e08f03f443689828dbf608e2086c rdf:first N4906e07418ed439da5798705e0289778
41 rdf:rest rdf:nil
42 N4906e07418ed439da5798705e0289778 schema:familyName Benveniste
43 schema:givenName Albert
44 rdf:type schema:Person
45 N5ff32904a042486dade56fd0d3b9d262 schema:isbn 3-540-16043-4
46 schema:name Detection of Abrupt Changes in Signals and Dynamical Systems
47 rdf:type schema:Book
48 N6400c36db0de4f16ac4ac406a9b68ac9 schema:familyName Basseville
49 schema:givenName Michèle
50 rdf:type schema:Person
51 N64b9ca37833146c48e14d9496d700926 rdf:first sg:person.010070142507.94
52 rdf:rest rdf:nil
53 N804e70db1ade4cddbabbb5822f02d72d rdf:first sg:person.0725124105.86
54 rdf:rest N64b9ca37833146c48e14d9496d700926
55 N9278f7af07f0469b852c63eb3bb2b8f4 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nb249aa9890df4b7884f4dee7180ecff3 rdf:first N6400c36db0de4f16ac4ac406a9b68ac9
58 rdf:rest N3ef7e08f03f443689828dbf608e2086c
59 Nfa0764a140a0495c9e4bf8ca933efbbb schema:name dimensions_id
60 schema:value pub.1052821872
61 rdf:type schema:PropertyValue
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:person.010070142507.94 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
69 schema:familyName Willsky
70 schema:givenName Alan S.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070142507.94
72 rdf:type schema:Person
73 sg:person.011136601066.73 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
74 schema:familyName Chow
75 schema:givenName Edward Y.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136601066.73
77 rdf:type schema:Person
78 sg:person.014775042133.81 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
79 schema:familyName Lou
80 schema:givenName Xi-Cheng
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014775042133.81
82 rdf:type schema:Person
83 sg:person.0725124105.86 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
84 schema:familyName Verghese
85 schema:givenName George C.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725124105.86
87 rdf:type schema:Person
88 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
89 schema:name Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...